Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Opt Express ; 31(16): 25954-25969, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710468

RESUMO

The estimation of skin optical properties by means of inverse problem solving from spatially resolved diffuse reflectance (SR-DR) spectra is one way to exploit the acquired clinical signals. This method requires the comparison between the experimental spectra collected with a medical device, and spectra generated by the photons transport numerical simulations. This comparison is usually limited to spectral shape due to the absence of intensity standardization of the experimental DR spectra. This study proposes to theoretically (using photometric calculation) and experimentally (from experimental spectra acquired on optical phantom) establish a corrective factor to obtain common intensity unit for experimental and simulated signals.

2.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983009

RESUMO

Actinic keratoses (AKs) are sun-damaged skin areas that affect 20% of the European adult population and more than 50% of people aged 70 years and over. There are currently no clinical or histological features allowing us to identify to which clinical class (i.e., regression or progression) an AK belongs. A transcriptomic approach seems to be a robust tool for AK characterization, but there is a need for additional studies, including more patients and elucidating the molecular signature of an AK. In this context, the present study, including the largest number of patients to date, is the first aiming at identifying biological features to objectively distinguish different AK signatures. We highlight two distinct molecular profiles: AKs featuring a molecular profile similar to squamous cell carcinomas (SCCs), which are called "lesional AKs" (AK_Ls), and AKs featuring a molecular profile similar to normal skin tissue, which are called "non-lesional AKs" (AK_NLs). The molecular profiles of both AK subclasses were studied, and 316 differentially expressed genes (DEGs) were identified between the two classes. The 103 upregulated genes in AK_L were related to the inflammatory response. Interestingly, downregulated genes were associated with keratinization. Finally, based on a connectivity map approach, our data highlight that the VEGF pathway could be a promising therapeutic target for high-risk lesions.


Assuntos
Carcinoma de Células Escamosas , Ceratose Actínica , Neoplasias Cutâneas , Adulto , Humanos , Idoso , Idoso de 80 Anos ou mais , Ceratose Actínica/genética , Ceratose Actínica/patologia , Transcriptoma , Neoplasias Cutâneas/patologia , Pele/patologia , Carcinoma de Células Escamosas/patologia
3.
J Opt Soc Am A Opt Image Sci Vis ; 36(11): C62-C68, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873695

RESUMO

The current clinical study is aimed at evaluating the clinical relevance of an innovative device (called CyPaM2 device) that for the first time provides urologists with (i) a panoramic image of the bladder inner wall within the surgery time, and with (ii) a simultaneous (bimodal) display of fluorescence and white-light video streams during the fluorescence assisted-transurethral resection of bladder cancers procedure. The clinical relevance of this CyPaM2 device was evaluated on 10 patients according to three criteria (image quality, fluorescent lesions detection relevance, and ergonomics) compared with a reference medical device. Innovative features displayed by the CyPaM2 device were evaluated without any possible comparison: (i) simultaneous bimodal display of white-light and fluorescence video streams, (ii) remote light control, and (iii) time delay for the panoramic image building. The results highlight the progress to achieve in order to obtain a fully mature device ready for commercialization and the relevance of the innovative features proposed by the CyPaM2 device confirming their interest.


Assuntos
Fluorescência , Imagem Óptica , Cirurgia Assistida por Computador/instrumentação , Uretra , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/cirurgia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Data Brief ; 53: 110163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375145

RESUMO

Optical spectroscopy is studied to contribute to skin cancer diagnosis. Indeed, optical spectra are modified along cancer progression and provide complementary information (e.g., on metabolism and tissue structure) to clinical examination for surgical guidance [1,2]. The current original dataset is made of autofluorescence and diffuse reflectance spectra acquired in vivo on 131 patients' skin with the SpectroLive device [3,4]. Spatially-resolved spectroscopy measurements were performed using a multi-fiber optic probe featuring 4 distances (0.4-1 mm) between excitation and collection optical fibers: spatial resolution allows spectra acquired at different distances to carry information from different depths in skin tissues. Five types of autofluorescence spectra were acquired using five different wavelength excitations (on the 365-415 nm spectral range) in order to collect information on several skin endogenous fluorophores (e.g., flavins, collagen). A sixth light source (white broadband) was used to acquire diffuse reflectance spectra carrying information about skin scattering properties and skin endogenous absorbers such as melanin and hemoglobin. Patients were proposed to be included into the clinical trial if they were suspected of suffering from actinic keratoses (precancerous skin lesions) or from basal or squamous cell carcinomas: in all cases, complete diagnostics is provided in the dataset. To increase the interest of the dataset and evaluate the dependence of optical spectra (intensity, shape) not only on pathological states but also on healthy skin features (civil age, skin age, gender, phototype, anatomical site), spectra were acquired for all 131 patients on two so-called "reference" skin sites known to rarely suffer from skin cancer: palm of the hand (featuring a thick skin type) and inner wrist (featuring thin skin). Spectra are available in .tab files: first column displays the spectral range on which intensity spectra were recorded (317-788 nm) and each following column provides an intensity spectrum acquired by each spectrometer for a given combination of light source excitation and distance. Each of the 131 folders corresponding to each of the 131 patients contains a .json file providing patients clinical features: gender, civil age, skin age, phototype score and class. All .tab files names include anatomical site and anatomopathological diagnostics of the skin site on which spectra were acquired: codes were defined to match a letter or an acronym to each diagnostic and anatomical site. To ensure quality control, a spectrum was acquired on the same calibration standard before starting spectra acquisition on each patient. It is therefore possible to follow the impact of the acquisition optical chain ageing during the 4.5 years that the patients were included. This dataset can be used by epidemiologists for the characterization of populations affected by skin cancers (gender ratio, mean age, anatomical sites typically affected, etc.); it may also be used by researchers in artificial intelligence to develop innovative methods to process such data and contribute to non-invasive diagnostics of skin cancers whose incidence is steadily increasing.

5.
J Biophotonics ; 16(7): e202300035, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37095684

RESUMO

This study presents the results of the classification of diffuse reflectance (DR) spectra and multiexcitation autofluorescence (AF) spectra that were collected in vivo from precancerous and benign skin lesions at three different source detector separation (SDS) values. Spectra processing pipeline consisted of dimensionality reduction, which was performed using principal component analysis (PCA), followed by classification step using such methods as support vector machine (SVM), multilayered perceptron (MLP), linear discriminant analysis (LDA), and random forest (RF). In order to increase the efficiency of lesion classification, several data fusion methods were applied to the classification results: majority voting, stacking, and manual optimization of weights. The results of the study showed that in most of cases the use of data fusion methods increased the average multiclass classification accuracy from 2% up to 4%. The highest accuracy of multiclass classification was obtained using the manual optimization of weights and reached 94.41%.


Assuntos
Lesões Pré-Cancerosas , Pele , Humanos , Análise Espectral , Pele/patologia , Redes Neurais de Computação , Algoritmo Florestas Aleatórias , Lesões Pré-Cancerosas/patologia , Máquina de Vetores de Suporte
6.
J Biomed Opt ; 28(5): 055002, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37250859

RESUMO

Significance: The clinical use of optical methods for in vivo skin imaging is limited by skin strong scattering properties, which reduce image contrast and probing depth. The efficiency of optical methods can be improved by optical clearing (OC). However, for the use of OC agents (OCAs) in a clinical setting, compliance with acceptable non-toxic concentrations is required. Aim: OC of in vivo human skin, combined with physical and chemical methods to enhance skin permeability to OCAs, was performed to determine the clearing-effectiveness of biocompatible OCAs using line-field confocal optical coherence tomography (LC-OCT) imaging. Approach: Nine types of OCAs mixtures were used in association with dermabrasion and sonophoresis for OC protocol on three volunteers hand skin. From 3D images obtained every 5 min for 40 min, the intensity and contrast parameters were extracted to assess their changes during the clearing process and evaluate each OCAs mixture's clearing efficacy. Results: The LC-OCT images average intensity and contrast increased over the entire skin depth with all OCAs. The best image contrast and intensity improvement was observed using the polyethylene glycol, oleic acid, and propylene glycol mixture. Conclusions: Complex OCAs featuring reduced component concentrations that meet drug regulation-established biocompatibility requirements were developed and proved to induce significant skin tissues clearing. By allowing deeper observations and higher contrast, such OCAs in combination with physical and chemical permeation enhancers may improve LC-OCT diagnostic efficacy.


Assuntos
Pele , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Pele/diagnóstico por imagem , Polietilenoglicóis/química , Propilenoglicol , Imageamento Tridimensional
7.
J Biophotonics ; 15(1): e202100202, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34476912

RESUMO

A spatially resolved multimodal spectroscopic device was used on a two-layered "hybrid" model made of ex vivo skin and fluorescent gel to investigate the effect of skin optical clearing on the depth sensitivity of optical spectroscopy. Time kinetics of fluorescence and diffuse reflectance spectra were acquired in four experimental conditions: with optical clearing agent (OCA) 1 made of polyethylene glycol 400 (PEG-400), propylene glycol and sucrose; with OCA 2 made of PEG-400 and dimethyl sulfoxide (DMSO); with saline solution as control and a "dry" condition. An increase in the gel fluorescence back reflected intensity was measured after optical clearing. Effect of OCA 2 turned out to be stronger than that of OCA 1, possibly due to DMSO impact on the stratum corneum keratin conformation. Complementary experimental results showed increased light transmittance through the skin and confirmed that the improvement in the depth sensitivity of the multimodal spectroscopic approach is related not only to the dehydration and refractive indices matching due to optical clearing, but also to the mechanical compression of tissues caused by the application of the spectroscopic probe.


Assuntos
Propilenoglicol , Pele , Epiderme , Humanos , Análise Espectral
8.
Photodiagnosis Photodyn Ther ; 31: 101829, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32445963

RESUMO

BACKGROUND: The study proposes to improve bladder cancer diagnosis by photodynamic diagnosis (PDD) using red-light excitation (632.8 nm) of 5-ALA induced-protoporphyrin IX. Employing 9 patients' bladders, two types of signals were used to improve diagnostic accuracy for malignancy and we also present numerical modeling of the scattering coefficient to provide biological explanation of the results obtained. METHODS: Two modalities of bladder cancer spectral diagnosis are presented: conventional PDD and intensity assessment of the diffusely reflected laser light by fiber-optic spectroscopy. Experiments are done in clinical conditions and as a series of numerical simulations. RESULTS: High-grade cancerous bladder tissues display twice a higher relative fluorescence intensity (mean value 1, n = 9) than healthy (0.39, n = 9), dysplastic (0.44, n = 5) tissues and CIS (0.39, n = 2). The laser back-scattering signal allows to discriminate most effectively high-grade cancerous and dysplastic tissues from normal. Numerical modeling of diffuse reflectance spectra reveals that spectral behavior of the back-scattered light depends on both, nuclear size and nuclear density of tumoral cells. CONCLUSIONS: Unlike the fluorescence signal, where its value is higher in the case of pathological tissues, the tendency of the laser signal to, both, decrease or increase in comparison with the signal from normal urothelium, should be perceived as a sign towards neoplasm. Numerical simulation reveals that such a double-analysis at a multiwavelength mode potentially may be used to provide diagnostic accuracy.


Assuntos
Fotoquimioterapia , Neoplasias da Bexiga Urinária , Ácido Aminolevulínico , Fluorescência , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Espectrometria de Fluorescência , Análise Espectral , Neoplasias da Bexiga Urinária/diagnóstico
9.
J Biomed Opt ; 14(1): 014011, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19256699

RESUMO

Histopathological analysis and in vivo optical spectroscopy were used to discriminate several histological stages of UV-irradiated mouse skin. At different times throughout the 30-week irradiation, autofluorescence (AF) and diffuse reflectance (DR) spectra were acquired in a bimodal approach. Then skin was sampled and processed to be classified, according to morphological criteria, into four histological categories: normal, and three types of hyperplasia (compensatory, atypical, and dysplastic). After extracting spectral characteristics, principal component analysis (data reduction) and the k-nearest neighbor classifying method were applied to compare diagnostic performances of monoexcitation AF (based on each of the seven excitation wavelengths: 360, 368, 390, 400, 410, 420, and 430 nm), multiexcitation AF (combining the seven excitation wavelengths), DR, and bimodal spectroscopies. Visible wavelengths are the most sensitive ones to discriminate compensatory from precancerous (atypical and dysplastic) states. Multiexcitation AF provides an average 6-percentage-point increased sensitivity compared to the best scores obtained with monoexcitation AF for all pairs of tissue categories. Bimodality results in a 4-percentage-point increase of specificity when discriminating the three types of hyperplasia. Thus, bimodal spectroscopy appears to be a promising tool to discriminate benign from precancerous stages; clinical investigations should be carried out to confirm these results.


Assuntos
Algoritmos , Diagnóstico por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias Induzidas por Radiação/patologia , Neoplasias Cutâneas/patologia , Espectrometria de Fluorescência/métodos , Animais , Dermoscopia/métodos , Feminino , Camundongos , Estadiamento de Neoplasias/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Raios Ultravioleta
10.
Biomed Opt Express ; 10(7): 3410-3424, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31467786

RESUMO

Spatially resolved multiply excited autofluorescence spectroscopy is a valuable optical biopsy technique to investigate skin UV-visible optical properties in vivo in clinics. However, it provides bulk fluorescence signals from which the individual endogenous fluorophore contributions need to be disentangled. Skin optical clearing allows for increasing tissue transparency, thus providing access to more accurate in-depth information. The aim of the present contribution was to study the time changes in skin spatially resolved and multiply excited autofluorescence spectra during skin optical clearing. The latter spectra were acquired on an ex vivo human skin strip lying on a fluorescent gel substrate during 37 minutes of the optical clearing process of a topically applied sucrose-based solution. A Non Negative Matrix Factorization-based blind source separation approach was proposed to unmix skin tissue intrinsic fluorophore contributions and to analyze the time evolution of this mixing throughout the optical clearing process. This spectral unmixing exploited the multidimensionality of the acquired data, i.e., spectra resolved in five excitation wavelengths, four source-to-detector separations, and eight measurement times. Best fitting results between experimental and estimated spectra were obtained for optimal numbers of 3 and 4 sources. These estimated spectral sources exhibited common identifiable shapes of fluorescence emission spectra related to the fluorescent gel substrate and to known skin intrinsic fluorophores matching namely dermis collagen/elastin and epidermis flavins. The time analysis of the fluorophore contributions allowed us to highlight how the clearing process towards the deepest skin layers impacts skin autofluorescence through time, namely with a strongest contribution to the bulk autofluorescence signal of dermis collagen (respectively epidermis flavins) fluorescence at shortest (respectively longest) excitation wavelengths and longest (respectively shortest) source-to-detector separations.

11.
Theranostics ; 7(2): 436-451, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255341

RESUMO

Despite recent progress in conventional therapeutic approaches, the vast majority of glioblastoma recur locally, indicating that a more aggressive local therapy is required. Interstitial photodynamic therapy (iPDT) appears as a very promising and complementary approach to conventional therapies. However, an optimal fractionation scheme for iPDT remains the indispensable requirement. To achieve that major goal, we suggested following iPDT tumor response by a non-invasive imaging monitoring. Nude rats bearing intracranial glioblastoma U87MG xenografts were treated by iPDT, just after intravenous injection of AGuIX® nanoparticles, encapsulating PDT and imaging agents. Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) allowed us an original longitudinal follow-up of post-treatment effects to discriminate early predictive markers. We successfully used conventional MRI, T2 star (T2*), Diffusion Weighted Imaging (DWI) and MRS to extract relevant profiles on tissue cytoarchitectural alterations, local vascular disruption and metabolic information on brain tumor biology, achieving earlier assessment of tumor response. From one day post-iPDT, DWI and MRS allowed us to identify promising markers such as the Apparent Diffusion Coefficient (ADC) values, lipids, choline and myoInositol levels that led us to distinguish iPDT responders from non-responders. All these responses give us warning signs well before the tumor escapes and that the growth would be appreciated.


Assuntos
Monitoramento de Medicamentos/métodos , Glioblastoma/diagnóstico , Glioblastoma/terapia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Fotoquimioterapia , Prótons , Animais , Meios de Contraste/administração & dosagem , Modelos Animais de Doenças , Xenoenxertos , Estudos Longitudinais , Nanopartículas/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Ratos Nus , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa