Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
BMC Genomics ; 24(1): 139, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944971

RESUMO

BACKGROUND: Non-human primates, such as Rhesus macaques, are a powerful model for studies of the cellular and physiological effects of radiation, development of radiation biodosimetry, and for understanding the impact of radiation on human health. Here, we study the effects of 4 Gy total body irradiation (TBI) at the molecular level out to 28 days and at the cytogenetic level out to 56 days after exposure. We combine the global transcriptomic and proteomic responses in peripheral whole blood to assess the impact of acute TBI exposure at extended times post irradiation. RESULTS: The overall mRNA response in the first week reflects a strong inflammatory reaction, infection response with neutrophil and platelet activation. At 1 week, cell cycle arrest and re-entry processes were enriched among mRNA changes, oncogene-induced senescence and MAPK signaling among the proteome changes. Influenza life cycle and infection pathways initiated earlier in mRNA and are reflected among the proteomic changes during the first week. Transcription factor proteins SRC, TGFß and NFATC2 were immediately induced at 1 day after irradiation with increased transcriptional activity as predicted by mRNA changes persisting up to 1 week. Cell counts revealed a mild / moderate hematopoietic acute radiation syndrome (H-ARS) reaction to irradiation with expected lymphopenia, neutropenia and thrombocytopenia that resolved within 30 days. Measurements of micronuclei per binucleated cell levels in cytokinesis-blocked T-lymphocytes remained high in the range 0.27-0.33 up to 28 days and declined to 0.1 by day 56. CONCLUSIONS: Overall, we show that the TBI 4 Gy dose in NHPs induces many cellular changes that persist up to 1 month after exposure, consistent with damage, death, and repopulation of blood cells.


Assuntos
Transcriptoma , Irradiação Corporal Total , Animais , Macaca mulatta , Proteoma , Proteômica , Multiômica , Células Sanguíneas , Doses de Radiação
2.
Cytogenet Genome Res ; 163(3-4): 197-209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928338

RESUMO

Blood-based gene expression profiles that can reconstruct radiation exposure are being developed as a practical approach to radiation biodosimetry. However, age and sex could potentially limit the accuracy of the approach. In this study, we determined the impact of age on the peripheral blood cell gene expression profile of female mice exposed to radiation and identified differences and similarities with a previously obtained transcriptomic signature of male mice. Young (2 months) and old (24 months) female mice were irradiated with 4 Gy X-rays, total RNA was isolated from blood 24 hours later and subjected to whole-genome microarray analysis. Dose reconstruction analyses using a gene signature trained on gene expression data from irradiated young male mice showed accurate reconstruction of 0 or 4 Gy doses with root mean square error of ±0.75 Gy (R2 = 0.90) in young female mice. Although dose reconstruction for irradiated old female mice was less accurate than young female mice, the deviation from the actual radiation dose was not statistically significant. Pathway analysis of differentially expressed genes revealed that after irradiation, apoptosis-related functions were overrepresented, whereas functions related to quantities of various immune cell subtypes were underrepresented, among differentially expressed genes from young female mice, but not older animals. Furthermore, young mice significantly upregulated genes involved in phagocytosis, a process that eliminates apoptotic cells and preserves tissue homeostasis. Both functions were also overrepresented in young, but not old, male mice following 4 Gy X-irradiation. Lastly, functions associated with neutrophil activation that is essential for killing invading pathogens and regulating the inflammatory response were predicted to be uniquely enriched in young but not old female mice. This work supports the concept that peripheral blood gene expression profiles can be identified in mice that accurately predict physical radiation dose exposure irrespective of age and sex.


Assuntos
Apoptose , Perfilação da Expressão Gênica , Feminino , Masculino , Animais , Camundongos , Análise Serial de Tecidos , Transcriptoma
3.
Cytogenet Genome Res ; 163(3-4): 121-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37793357

RESUMO

The cytokinesis-block micronucleus (CBMN) assay is an established method for assessing chromosome damage in human peripheral blood lymphocytes resulting from exposure to genotoxic agents such as ionizing radiation. The objective of this study was to measure cytogenetic DNA damage and hematology parameters in vivo based on MN frequency in peripheral blood lymphocytes (PBLs) from adult and pediatric leukemia patients undergoing hematopoietic stem cell transplantation preceded by total body irradiation (TBI) as part of the conditioning regimen. CBMN assay cultures were prepared from fresh blood samples collected before and at 4 and 24 h after the start of TBI, corresponding to doses of 1.25 Gy and 3.75 Gy, respectively. For both age groups, there was a significant increase in MN yields with increasing dose (p < 0.05) and dose-dependent decrease in the nuclear division index (NDI; p < 0.0001). In the pre-radiotherapy samples, there was a significantly higher NDI measured in the pediatric cohort compared to the adult due to an increase in the percentage of tri- and quadri-nucleated cells scored. Complete blood counts with differential recorded before and after TBI at the 24-h time point showed a rapid increase in neutrophil (p = 0.0001) and decrease in lymphocyte (p = 0.0006) counts, resulting in a highly elevated neutrophil-to-lymphocyte ratio (NLR) of 14.45 ± 1.85 after 3.75 Gy TBI (pre-exposure = 4.62 ± 0.49), indicating a strong systemic inflammatory response. Correlation of the hematological cell subset counts with cytogenetic damage, indicated that only the lymphocyte subset survival fraction (after TBI compared with before TBI) showed a negative correlation with increasing MN frequency from 0 to 1.25 Gy (r = -0.931; p = 0.007). Further, the data presented here indicate that the combination of CBMN assay endpoints (MN frequency and NDI values) and hematology parameters could be used to assess cytogenetic damage and early hematopoietic injury in the peripheral blood of leukemia patients, 24 h after TBI exposure.


Assuntos
Leucemia , Irradiação Corporal Total , Adulto , Humanos , Criança , Irradiação Corporal Total/efeitos adversos , Testes para Micronúcleos/métodos , Citocinese/genética , Citocinese/efeitos da radiação , Linfócitos
4.
J Proteome Res ; 20(11): 5145-5155, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34585931

RESUMO

An important component of ionizing radiation (IR) exposure after a radiological incident may include low-dose rate (LDR) exposures either externally or internally, such as from 137Cs deposition. In this study, a novel irradiation system, VAriable Dose-rate External 137Cs irradiatoR (VADER), was used to expose male and female mice to a variable LDR irradiation over a 30 d time span to simulate fall-out-type exposures in addition to biofluid collection from a reference dose rate (0.8 Gy/min). Radiation markers were identified by untargeted metabolomics and random forests. Mice exposed to LDR exposures were successfully identified from control groups based on their urine and serum metabolite profiles. In addition to metabolites commonly perturbed after IR exposure, we identified and validated a novel metabolite (hexosamine-valine-isoleucine-OH) that increased up to 150-fold after LDR and 80-fold after conventional exposures in urine. A multiplex panel consisting of hexosamine-valine-isoleucine-OH with other urinary metabolites (N6,N6,N6-trimethyllysine, carnitine, 1-methylnicotinamide, and α-ketoglutaric acid) achieved robust classification performance using receiver operating characteristic curve analysis, irrespective of the dose rate or sex. These results show that in terms of biodosimetry, dysregulated energy metabolism is associated with IR exposure for both LDR and conventional IR exposures. These mass spectrometry data have been deposited to the NIH data repository via Metabolomics Workbench with study IDs ST001790, ST001791, ST001792, ST001793, and ST001806.


Assuntos
Radioisótopos de Césio , Metabolômica , Animais , Biomarcadores , Relação Dose-Resposta à Radiação , Feminino , Masculino , Espectrometria de Massas , Metabolômica/métodos , Camundongos
5.
BMC Genomics ; 20(1): 329, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046668

RESUMO

BACKGROUND: Ionizing Radiation (IR) is a known pro-inflammatory agent and in the process of development of biomarkers for radiation biodosimetry, a chronic inflammatory disease condition could act as a confounding factor. Hence, it is important to develop radiation signatures that can distinguish between IR-induced inflammatory responses and pre-existing disease. In this study, we compared the gene expression response of a genetically modified mouse model of inflammatory bowel disease (Il10-/-) with that of a normal wild-type mouse to potentially develop transcriptomics-based biodosimetry markers that can predict radiation exposure in individuals regardless of pre-existing inflammatory condition. RESULTS: Wild-type (WT) and Il10-/- mice were exposed to whole body irradiation of 7 Gy X-rays. Gene expression responses were studied using high throughput whole genome microarrays in peripheral blood 24 h post-irradiation. Analysis resulted in identification of 1962 and 1844 genes differentially expressed (p < 0.001, FDR < 10%) after radiation exposure in Il10-/- and WT mice respectively. A set of 155 genes was also identified as differentially expressed between WT and Il10-/- mice at the baseline pre-irradiation level. Gene ontology analysis revealed that the 155 baseline differentially expressed genes were mainly involved in inflammatory response, glutathione metabolism and collagen deposition. Analysis of radiation responsive genes revealed that innate immune response and p53 signaling processes were strongly associated with up-regulated genes, whereas B-cell development process was found to be significant amongst downregulated genes in the two genotypes. However, specific immune response pathways like MHC based antigen presentation, interferon signaling and hepatic fibrosis were associated with radiation responsive genes in Il10-/- mice but not WT mice. Further analysis using the IPA prediction tool revealed significant differences in the predicted activation status of T-cell mediated signaling as well as regulators of inflammation between WT and Il10-/- after irradiation. CONCLUSIONS: Using a mouse model we established that an inflammatory disease condition could affect the expression of many radiation responsive genes. Nevertheless, we identified a panel of genes that, regardless of disease condition, could predict radiation exposure. Our results highlight the need for consideration of pre-existing conditions in the population in the process of development of reliable biodosimetry markers.


Assuntos
Modelos Animais de Doenças , Regulação da Expressão Gênica , Inflamação/imunologia , Doenças Inflamatórias Intestinais/genética , Interleucina-10/fisiologia , Radiometria/efeitos adversos , Transcriptoma , Animais , Biomarcadores/análise , Biologia Computacional , Inflamação/etiologia , Inflamação/genética , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Anotação de Sequência Molecular , Doses de Radiação , Irradiação Corporal Total
6.
BMC Genomics ; 19(1): 504, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954325

RESUMO

BACKGROUND: Radiation exposure due to the detonation of an improvised nuclear device remains a major security concern. Radiation from such a device involves a combination of photons and neutrons. Although photons will make the greater contribution to the total dose, neutrons will certainly have an impact on the severity of the exposure as they have high relative biological effectiveness. RESULTS: We investigated the gene expression signatures in the blood of mice exposed to 3 Gy x-rays, 0.75 Gy of neutrons, or to mixed field photon/neutron with the neutron fraction contributing 5, 15%, or 25% of a total 3 Gy radiation dose. Gene ontology and pathway analysis revealed that genes involved in protein ubiquitination pathways were significantly overrepresented in all radiation doses and qualities. On the other hand, eukaryotic initiation factor 2 (EIF2) signaling pathway was identified as one of the top 10 ranked canonical pathways in neutron, but not pure x-ray, exposures. In addition, the related mTOR and regulation of EIF4/p70S6K pathways were also significantly underrepresented in the exposures with a neutron component, but not in x-ray radiation. The majority of the changed genes in these pathways belonged to the ribosome biogenesis and translation machinery and included several translation initiation factors (e.g. Eif2ak4, Eif3f), as well as 40S and 60S ribosomal subunits (e.g. Rsp19, Rpl19, Rpl27). Many of the differentially downregulated ribosomal genes (e.g. RPS19, RPS28) have been causally associated with human bone marrow failure syndromes and hematologic malignancies. We also observed downregulation of transfer RNA processes, in the neutron-only exposure (p < 0.005). Ingenuity Pathway Analysis (p < 0.05) of differentially expressed genes predicted significantly suppressed activity of the upstream regulators c-Myc and Mycn, transcription factors known to control ribosome biogenesis. CONCLUSIONS: We describe the gene expression profile of mouse blood following exposure to mixed field neutron/photon irradiation. We have discovered that pathways related to protein translation are significantly underrepresented in the exposures containing a neutron component. Our results highlight the significance of neutron exposures that even the smallest percentage can have profound biological effects that will affect medical management and treatment decisions in case of a radiological emergency.


Assuntos
Nêutrons , Transcriptoma/efeitos da radiação , Animais , Regulação da Expressão Gênica/efeitos da radiação , Ontologia Genética , Masculino , Redes e Vias Metabólicas/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Fótons , Doses de Radiação , Transdução de Sinais/efeitos da radiação , Raios X
7.
BMC Genomics ; 18(1): 2, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049433

RESUMO

BACKGROUND: In the event of an improvised nuclear device detonation, the prompt radiation exposure would consist of photons plus a neutron component that would contribute to the total dose. As neutrons cause more complex and difficult to repair damage to cells that would result in a more severe health burden to affected individuals, it is paramount to be able to estimate the contribution of neutrons to an estimated dose, to provide information for those making treatment decisions. RESULTS: Mice exposed to either 0.25 or 1 Gy of neutron or 1 or 4 Gy x-ray radiation were sacrificed at 1 or 7 days after exposure. Whole genome microarray analysis identified 7285 and 5045 differentially expressed genes in the blood of mice exposed to neutron or x-ray radiation, respectively. Neutron exposure resulted in mostly downregulated genes, whereas x-rays showed both down- and up-regulated genes. A total of 34 differentially expressed genes were regulated in response to all ≥1 Gy exposures at both times. Of these, 25 genes were consistently downregulated at days 1 and 7, whereas 9 genes, including the transcription factor E2f2, showed bi-directional regulation; being downregulated at day 1, while upregulated at day 7. Gene ontology analysis revealed that genes involved in nucleic acid metabolism processes were persistently downregulated in neutron irradiated mice, whereas genes involved in lipid metabolism were upregulated in x-ray irradiated animals. Most biological processes significantly enriched at both timepoints were consistently represented by either under- or over-expressed genes. In contrast, cell cycle processes were significant among down-regulated genes at day 1, but among up-regulated genes at day 7 after exposure to either neutron or x-rays. Cell cycle genes downregulated at day 1 were mostly distinct from the cell cycle genes upregulated at day 7. However, five cell cycle genes, Fzr1, Ube2c, Ccna2, Nusap1, and Cdc25b, were both downregulated at day 1 and upregulated at day 7. CONCLUSIONS: We describe, for the first time, the gene expression profile of mouse blood cells following exposure to neutrons. We have found that neutron radiation results in both distinct and common gene expression patterns compared with x-ray radiation.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Nêutrons , Transcriptoma , Raios X , Animais , Células Sanguíneas/metabolismo , Células Sanguíneas/efeitos da radiação , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Camundongos , Anotação de Sequência Molecular , Doses de Radiação , Reprodutibilidade dos Testes
9.
Radiat Environ Biophys ; 55(1): 53-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26791381

RESUMO

Developing new methods for radiation biodosimetry has been identified as a high-priority need in case of a radiological accident or nuclear terrorist attacks. A large-scale radiological incident would result in an immediate critical need to assess the radiation doses received by thousands of individuals. Casualties will be exposed to different doses and dose rates due to their geographical position and sheltering conditions, and dose rate is one of the principal factors that determine the biological consequences of a given absorbed dose. In these scenarios, high-throughput platforms are required to identify the biological dose in a large number of exposed individuals for clinical monitoring and medical treatment. The Rapid Automated Biodosimetry Tool (RABiT) is designed to be completely automated from the input of blood sample into the machine to the output of a dose estimate. The primary goal of this paper was to quantify the dose rate effects for RABiT-measured micronuclei in vitro in human lymphocytes. Blood samples from healthy volunteers were exposed in vitro to different doses of X-rays to acute and protracted doses over a period up to 24 h. The acute dose was delivered at ~1.03 Gy/min and the low dose rate exposure at ~0.31 Gy/min. The results showed that the yield of micronuclei decreases with decreasing dose rate starting at 2 Gy, whereas response was indistinguishable from that of acute exposure in the low dose region, up to 0.5 Gy. The results showed a linear-quadratic dose-response relationship for the occurrence of micronuclei for the acute exposure and a linear dose-response relationship for the low dose rate exposure.


Assuntos
Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Radiometria/métodos , Adulto , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Testes para Micronúcleos , Pessoa de Meia-Idade
10.
BMC Genomics ; 16: 586, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26251171

RESUMO

BACKGROUND: The radioactive isotope Strontium-90 ((90)Sr) may be released as a component of fallout from nuclear accidents, or in the event of a radiological incident such as detonation of an improvised nuclear device, and if ingested poses a significant health risk to exposed individuals. In order to better understand the response to (90)Sr, using an easily attainable and standard biodosimetry sample fluid, we analyzed the global transcriptomic response of blood cells in an in vivo model system. RESULTS: We injected C57BL/6 mice with a solution of 90SrCl2 and followed them over a 30-day period. At days 4, 7, 9, 25 and 30, we collected blood and isolated RNA for microarray analyses. These days corresponded to target doses in a range from 1-5 Gy. We investigated changes in mRNA levels using microarrays, and changes in specific microRNA (miRNA) predicted to be involved in the response using qRT-PCR. We identified 8082 differentially expressed genes in the blood of mice exposed to (90)Sr compared with controls. Common biological functions were affected throughout the study, including apoptosis of B and T lymphocytes, and atrophy of lymphoid organs. Cellular functions such as RNA degradation and lipid metabolism were also affected during the study. The broad down regulation of genes observed in our study suggested a potential role for miRNA in gene regulation. We tested candidate miRNAs, mmu-miR-16, mmu-miR-124, mmu-miR-125 and mmu-mir-21; and found that all were induced at the earliest time point, day 4. CONCLUSIONS: Our study is the first to report the transcriptomic response of blood cells to the internal emitter (90)Sr in mouse and a possible role for microRNA in gene regulation after (90)Sr exposure. The most dramatic effect was observed on gene expression related to B-cell development and RNA maintenance. These functions were affected by genes that were down regulated throughout the study, suggesting severely compromised antigen response, which may be a result of the deposition of the radioisotope proximal to the hematopoietic compartment in bone.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Expressão Gênica/efeitos da radiação , Isótopos de Estrôncio/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linfócitos B/efeitos da radiação , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , RNA Mensageiro/genética , Liberação Nociva de Radioativos , Linfócitos T/efeitos da radiação
11.
Biomed Opt Express ; 15(4): 2561-2577, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633084

RESUMO

To improve particle radiotherapy, we need a better understanding of the biology of radiation effects, particularly in heavy ion radiation therapy, where global responses are observed despite energy deposition in only a subset of cells. Here, we integrated a high-speed swept confocally-aligned planar excitation (SCAPE) microscope into a focused ion beam irradiation platform to allow real-time 3D structural and functional imaging of living biological samples during and after irradiation. We demonstrate dynamic imaging of the acute effects of irradiation on 3D cultures of U87 human glioblastoma cells, revealing characteristic changes in cellular movement and intracellular calcium signaling following ionizing irradiation.

12.
Adv Sci (Weinh) ; : e2401415, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965824

RESUMO

Galactic cosmic radiation (GCR) is one of the most serious risks posed to astronauts during missions to the Moon and Mars. Experimental models capable of recapitulating human physiology are critical to understanding the effects of radiation on human organs and developing radioprotective measures against space travel exposures. The effects of systemic radiation are studied using a multi-organ-on-a-chip (multi-OoC) platform containing engineered tissue models of human bone marrow (site of hematopoiesis and acute radiation damage), cardiac muscle (site of chronic radiation damage) and liver (site of metabolism), linked by vascular circulation with an endothelial barrier separating individual tissue chambers from the vascular perfusate. Following protracted neutron radiation, the most damaging radiation component in deep space, a greater deviation of tissue function is observed as compared to the same cumulative dose delivered acutely. Further, by characterizing engineered bone marrow (eBM)-derived immune cells in circulation, 58 unique genes specific to the effects of protracted neutron dosing are identified, as compared to acutely irradiated and healthy tissues. It propose that this bioengineered platform allows studies of human responses to extended radiation exposure in an "astronaut-on-a-chip" model that can inform measures for mitigating cosmic radiation injury.

13.
Radiat Environ Biophys ; 52(4): 523-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995963

RESUMO

While gene expression studies have proved extremely important in understanding cellular processes, it is becoming more apparent that there may be differences in individual cells that are missed by studying the population as a whole. We have developed a qRT-PCR protocol that allows us to assay multiple gene products in small samples, starting at 100 cells and going down to a single cell, and have used it to study radiation responses at the single-cell level. Since the accuracy of qRT-PCR depends greatly on the choice of "housekeeping" genes used for normalization, initial studies concentrated on determining the optimal panel of such genes. Using an endogenous control array, it was found that for IMR90 cells, common housekeeping genes tend to fall into one of two categories-those that are relatively stably expressed regardless of the number of cells in the sample, e.g., B2M, PPIA, and GAPDH, and those that are more variable (again regardless of the size of the population), e.g., YWHAZ, 18S, TBP, and HPRT1. Further, expression levels in commonly studied radiation-response genes, such as ATF3, CDKN1A, GADD45A, and MDM2, were assayed in 100, 10, and single-cell samples. It is here that the value of single-cell analyses becomes apparent. It was observed that the expression of some genes such as FGF2 and MDM2 was relatively constant over all irradiated cells, while that of others such as FAS was considerably more variable. It was clear that almost all cells respond to ionizing radiation but the individual responses were considerably varied. The analyses of single cells indicate that responses in individual cells are not uniform and suggest that responses observed in populations are not indicative of identical patterns in all cells. This in turn points to the value of single-cell analyses.


Assuntos
Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Análise de Célula Única , Fibroblastos/metabolismo , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/efeitos dos fármacos
14.
Nat Genet ; 31(2): 210-5, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12021785

RESUMO

Expression of oncogenic Ras in primary human cells activates p53, thereby protecting cells from transformation. We show that in Ras-expressing IMR-90 cells, p53 is phosphorylated at Ser33 and Ser46 by the p38 mitogen-activated protein kinase (MAPK). Activity of p38 MAPK is regulated by the p53-inducible phosphatase PPM1D, creating a potential feedback loop. Expression of oncogenic Ras suppresses PPM1D mRNA induction, leaving p53 phosphorylated at Ser33 and Ser46 and in an active state. Retrovirus-mediated overexpression of PPM1D reduced p53 phosphorylation at these sites, abrogated Ras-induced apoptosis and partially rescued cells from cell-cycle arrest. Inactivation of p38 MAPK (the product of Mapk14) in vivo by gene targeting or by PPM1D overexpression expedited tumor formation after injection of mouse embryo fibroblasts (MEFs) expressing E1A+Ras into nude mice. The gene encoding PPM1D (PPM1D, at 17q22/q23) is amplified in human breast-tumor cell lines and in approximately 11% of primary breast tumors, most of which harbor wildtype p53. These findings suggest that inactivation of the p38 MAPK through PPM1D overexpression resulting from PPM1D amplification contributes to the development of human cancers by suppressing p53 activation.


Assuntos
Neoplasias da Mama/genética , Cromossomos Humanos Par 17 , Amplificação de Genes , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas de Neoplasias , Fosfoproteínas Fosfatases/genética , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias da Mama/etiologia , Feminino , Fibroblastos/fisiologia , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Fosforilação , Proteína Fosfatase 2C , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno
15.
Int J Radiat Biol ; 99(6): 925-933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-33970766

RESUMO

PURPOSE: Transcriptomic-based approaches are being developed to meet the needs for large-scale radiation dose and injury assessment and provide population triage following a radiological or nuclear event. This review provides background and definition of the need for new biodosimetry approaches, and summarizes the major advances in this field. It discusses some of the major model systems used in gene signature development, and highlights some of the remaining challenges, including individual variation in gene expression, potential confounding factors, and accounting for the complexity of realistic exposure scenarios. CONCLUSIONS: Transcriptomic approaches show great promise for both dose reconstruction and for prediction of individual radiological injury. However, further work will be needed to ensure that gene expression signatures will be robust and appropriate for their intended use in radiological or nuclear emergencies.


Assuntos
Radiometria , Transcriptoma , Perfilação da Expressão Gênica , Modelos Biológicos
16.
Int J Radiat Biol ; 99(12): 1853-1864, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37549410

RESUMO

PURPOSE: Development of an integrated time and dose model to explore the dynamics of gene expression alterations and identify biomarkers for biodosimetry following low- and high-dose irradiations at high dose rate. MATERIAL AND METHODS: We utilized multiple transcriptome datasets (GSE8917, GSE43151, and GSE23515) from Gene Expression Omnibus (GEO) for identifying candidate biological dosimeters. A linear mixed-effects model with random intercept was used to explore the dose-time dynamics of transcriptional responses and to functionally characterize the time- and dose-dependent changes in gene expression. RESULTS: We identified genes that are correlated with dose and time and discovered two clusters of genes that are either positively or negatively correlated with both dose and time based on the parameters of the model. Genes in these two clusters may have persistent transcriptional alterations. Twelve potential transcriptional markers for dosimetry-ARHGEF3, BAX, BBC3, CCDC109B, DCP1B, DDB2, F11R, GADD45A, GSS, PLK3, TNFRSF10B, and XPC were identified. Of these genes, BAX, GSS, and TNFRSF10B are positively associated with both dose and time course, have a persistent transcriptional response, and might be better biological dosimeters. CONCLUSIONS: With the proposed approach, we may identify candidate biomarkers that change monotonically in relation to dose, have a persistent transcriptional response, and are reliable over a wide dose range.


Assuntos
Regulação da Expressão Gênica , Radiação Ionizante , Proteína X Associada a bcl-2 , Relação Dose-Resposta à Radiação , Biomarcadores
17.
Radiat Res ; 200(3): 296-306, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421415

RESUMO

High-dose-radiation exposure in a short period of time leads to radiation syndromes characterized by severe acute and delayed organ-specific injury accompanied by elevated organismal morbidity and mortality. Radiation biodosimetry based on gene expression analysis of peripheral blood is a valuable tool to detect exposure to radiation after a radiological/nuclear incident and obtain useful biological information that could predict tissue and organismal injury. However, confounding factors, including chronic inflammation, can potentially obscure the predictive power of the method. GADD45A (Growth arrest and DNA damage-inducible gene a) plays important roles in cell growth control, differentiation, DNA repair, and apoptosis. GADD45A-deficient mice develop an autoimmune disease, similar to human systemic lupus erythematosus, characterized by severe hematological disorders, kidney disease, and premature death. The goal of this study was to elucidate how pre-existing inflammation in mice, induced by GADD45A ablation, can affect radiation biodosimetry. We exposed wild-type and GADD45A knockout male C57BL/6J mice to 7 Gy of X rays and 24 h later RNA was isolated from whole blood and subjected to whole genome microarray and gene ontology analyses. Dose reconstruction analysis using a gene signature trained on gene expression data from irradiated wild-type male mice showed accurate reconstruction of either a 0 Gy or 7 Gy dose with root mean square error of ± 1.05 Gy (R^2 = 1.00) in GADD45A knockout mice. Gene ontology analysis revealed that irradiation of both wild-type and GADD45A-null mice led to a significant overrepresentation of pathways associated with morbidity and mortality, as well as organismal cell death. However, based on their z-score, these pathways were predicted to be more significantly overrepresented in GADD45A-null mice, implying that GADD45A deletion may exacerbate the deleterious effects of radiation on blood cells. Numerous immune cell functions and quantities were predicted to be underrepresented in both genotypes; however, differentially expressed genes from irradiated GADD45A knockout mice predicted an increased deterioration in the numbers of T lymphocytes, as well as myeloid cells, compared with wild-type mice. Furthermore, an overrepresentation of genes associated with radiation-induced hematological malignancies was associated with GADD45A knockout mice, whereas hematopoietic and progenitor cell functions were predicted to be downregulated in irradiated GADD45A knockout mice. In conclusion, despite the significant differences in gene expression between wild-type and GADD45A knockout mice, it is still feasible to identify a panel of genes that could accurately distinguish between irradiated and control mice, irrespective of pre-existing inflammation status.


Assuntos
Proteínas de Ciclo Celular , Inflamação , Animais , Humanos , Masculino , Camundongos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Raios X
18.
Sci Rep ; 13(1): 10936, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414809

RESUMO

There is a persistent risk of a large-scale malicious or accidental exposure to ionizing radiation that may affect a large number of people. Exposure will consist of both a photon and neutron component, which will vary in magnitude between individuals and is likely to have profound impacts on radiation-induced diseases. To mitigate these potential disasters, there exists a need for novel biodosimetry approaches that can estimate the radiation dose absorbed by each person based on biofluid samples, and predict delayed effects. Integration of several radiation-responsive biomarker types (transcripts, metabolites, blood cell counts) by machine learning (ML) can improve biodosimetry. Here we integrated data from mice exposed to various neutron + photon mixtures, total 3 Gy dose, using multiple ML algorithms to select the strongest biomarker combinations and reconstruct radiation exposure magnitude and composition. We obtained promising results, such as receiver operating characteristic curve area of 0.904 (95% CI: 0.821, 0.969) for classifying samples exposed to ≥ 10% neutrons vs. < 10% neutrons, and R2 of 0.964 for reconstructing photon-equivalent dose (weighted by neutron relative biological effectiveness) for neutron + photon mixtures. These findings demonstrate the potential of combining various -omic biomarkers for novel biodosimetry.


Assuntos
Exposição à Radiação , Lesões por Radiação , Animais , Camundongos , Nêutrons , Eficiência Biológica Relativa , Fótons
19.
Radiat Res ; 200(1): 1-12, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212727

RESUMO

Novel biodosimetry assays for use in preparedness and response to potential malicious attacks or nuclear accidents would ideally provide accurate dose reconstruction independent of the idiosyncrasies of a complex exposure to ionizing radiation. Complex exposures will consist of dose rates spanning the low dose rates (LDR) to very high-dose rates (VHDR) that need to be tested for assay validation. Here, we investigate how a range of relevant dose rates affect metabolomic dose reconstruction at potentially lethal radiation exposures (8 Gy in mice) from an initial blast or subsequent fallout exposures compared to zero or sublethal exposures (0 or 3 Gy in mice) in the first 2 days, which corresponds to an integral time individuals will reach medical facilities after a radiological emergency. Biofluids (urine and serum) were collected from both male and female 9-10-week-old C57BL/6 mice at 1 and 2 days postirradiation (total doses of 0, 3 or 8 Gy) after a VHDR of 7 Gy/s. Additionally, samples were collected after a 2-day exposure consisting of a declining dose rate (1 to 0.004 Gy/min) recapitulating the 7:10 rule-of-thumb time dependency of nuclear fallout. Overall similar perturbations were observed in both urine and serum metabolite concentrations irrespective of sex or dose rate, with the exception of xanthurenic acid in urine (female specific) and taurine in serum (VHDR specific). In urine, we developed identical multiplex metabolite panels (N6, N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, and taurine) that could identify individuals receiving potentially lethal levels of radiation from the zero or sublethal cohorts with excellent sensitivity and specificity, with creatine increasing model performance at day 1. In serum, individuals receiving a 3 or 8 Gy exposure could be identified from their pre-irradiation samples with excellent sensitivity and specificity, however, due to a lower dose response the 3 vs. 8 Gy groups could not be distinguished from each other. Together with previous results, these data indicate that dose-rate-independent small molecule fingerprints have potential in novel biodosimetry assays.


Assuntos
Metabolômica , Radiação Ionizante , Masculino , Feminino , Animais , Camundongos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Metabolômica/métodos , Taurina , Relação Dose-Resposta à Radiação
20.
Exp Cell Res ; 317(11): 1548-66, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21440540

RESUMO

Mitochondrial DNA depleted (ρ(0)) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-κB and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental ρ(+) HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in ρ(0) cells compared to ρ(+) HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, ΙL17Β, ΙL18, ΙL19, and ΙL28Β) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-κB and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-κB/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in ρ(+) HSF, but this response was substantially decreased in ρ(0) HSF. Suppression of the IKK-NF-κB pathway by the small molecular inhibitor BMS-345541 and of the JAK2-STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated ρ(+) HSF. Inhibitory antibodies against IL6, the main activator of JAK2-STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-κB activation was partially lost in ρ(0) HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-κB targets, further suppressing IL6-JAK2-STAT3 that in concert with NF-κB regulated protection against TRAIL-induced apoptosis.


Assuntos
Apoptose , Cicloeximida/farmacologia , DNA Mitocondrial/metabolismo , Raios gama , Perfilação da Expressão Gênica , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Biomarcadores/metabolismo , Western Blotting , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Citometria de Fluxo , Imunofluorescência , Humanos , Luciferases/metabolismo , NF-kappa B/genética , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/efeitos da radiação , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Pele/citologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa