Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Ecotoxicol Environ Saf ; 274: 116213, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493702

RESUMO

Antibacterial films have gained attention since the outbreak of the COVID-19 pandemic; however, the impact of metals contained in antibacterial films on human safety have not been sufficiently investigated. This study reports on the important features that must be considered when assessing the bioaccessibility of Ag, Cu, and Zn in antibacterial films. Specifically, the effects of the artificial sweat component (i.e., amino acid and pH), surface weathering of antibacterial films, wipe sampling, and sebum were carefully examined. Our findings suggest that amino acids greatly affect bioaccessibility as amino acids act as ligands to facilitate metal ion leaching. In addition, constant exposure to ultraviolet C causes the film surface to oxidize, which significantly increases metal bioaccessibility due to the electrostatic repulsion between metal oxides and organic substrates. The presence of sebum in artificial sweat and physical damage to the film surface had no significant effects. Furthermore, the wipe sampling used to mimic the realistic dermal contact suggests the feasibility of applying this method for the assessment of bioaccessibility of metals in antibacterial films. The method offers significant advantages for evaluating the human safety aspects of skin contact with consumer products in future research.


Assuntos
Metais Pesados , Pandemias , Humanos , Metais/análise , Pele/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Aminoácidos/metabolismo , Metais Pesados/análise , Monitoramento Ambiental/métodos
2.
Ecotoxicol Environ Saf ; 263: 115270, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523794

RESUMO

Humans, especially infants, are exposed to harmful substances through various means, including non-nutritive sucking behaviors. Here, we compared the "one-compartment model" and the "three-compartment model" within the "suck model" to assess the oral bioaccessibility of heavy metals in various products and evaluated whether these models can be employed to assess 12 heavy metals present in consumer products. Several certified reference materials, including plastic, paint, glass, and metals, were employed to ensure sample homogeneity. By comparing the two models, we validated that a considerable amount of complexes were formed between saliva components and the extracted heavy metals and that some of these complexes dissociated during reactions with the gastric/intestinal fluids. Furthermore, we observed that in the cases of Cu and Pb, additional complexes were formed as a result of reactions with gastric/intestinal fluids. We measured the total concentrations of the extracted heavy metals using artificial saliva through acid digestion and found that up to 99.7% of the heavy metals participated in the formation of complexes, depending on the characteristics of the sample (e.g., composition) and the target element. This result indicates that the current suck model may notably underestimate the oral bioaccessibility of heavy metals in products associated with sucking behaviors. Therefore, we propose a more conservative and simpler test method for assessing oral bioaccessibility of heavy metals that involves measuring the total concentrations of heavy metals extracted from consumer products using artificial saliva. By doing so, we can account for potential variations in the digestive milieu (e.g., due to ingested food) and the inconsistency in complex formation-dissociation characteristics.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Lactente , Humanos , Saliva Artificial , Metais Pesados/análise , Digestão , Hábitos , Monitoramento Ambiental/métodos , Medição de Risco/métodos , Poluentes do Solo/análise
3.
Environ Geochem Health ; 44(3): 925-932, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34120301

RESUMO

Dimethylmonothioarsinic acid (DMMTA(V)) and dimethyldithioarsinic acid (DMDTA(V)), which are commonly found in landfill leachate and pore water of rice paddy soil, have attracted considerable attention for their high toxicity. This study aims to evaluate the behavior and potential risks of DMMTA(V) and DMDTA(V) in the environment by conducting an equilibrium sorption test using 2-line ferrihydrite and acute toxicity (immobilization) test using Daphnia magna. The overall maximum sorption capacity (qm) derived by the Langmuir isotherm model showed an increase in the order of inorganic arsenate (As(V)) > dimethylarsinic acid (DMA(V)) > DMMTA(V) > DMDTA(V), which was likely due to steric hindrance due to the presence of methyl and thiol groups. Moreover, DMMTA(V) and DMDTA(V) showed no or negligible change in qm with pH change, while qm decreased rapidly with increasing pH in As(V) and DMA(V). The 50% inhibition concentrations (IC50) for As(V), DMA(V), DMMTA(V), and DMDTA(V), which were measured after 48 h exposure to D. magna, were 9.5, > 30, 1.7, and 6.5 mg/L, respectively. Overall, the results demonstrated that DMMTA(V) and DMDTA(V) have high mobility and eco-toxicity in the environment and that methylated thioarsenicals should be accurately monitored and controlled.


Assuntos
Arsenicais , Ácido Cacodílico , Animais , Ácido Cacodílico/análogos & derivados , Ácido Cacodílico/toxicidade , Daphnia , Compostos Férricos
4.
Environ Geochem Health ; 38(1): 255-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26024724

RESUMO

Dimethyldithioarsinic acid (DMDTA(V)), present in such intense sources as municipal landfill leachate, has drawn a great deal of attention due to its abundant occurrence and different aspect of toxicity. The hydrosulfide (HS(-)) concentration in leachate was studied as a major variable affecting the formation of DMDTA(V). To this end, the HPLC-ICPMS system equipped with the reversed-phase C18 column was used to determine DMDTA(V). Simulated landfill leachates (SLLs) were prepared to cover a mature landfill condition with the addition of sodium sulfate and sulfide at varying concentrations in the presence of dimethylarsinic acid (DMA(V)). The concentration of sodium sulfide added in the SLLs generally exhibited a strong positive correlation with the concentration of DMDTA(V). As such, the formation of DMDTA(V) in the SLLs is demonstrated to be controlled by the interactive relationship between DMA(V) and the HS(-).


Assuntos
Arsenicais/química , Ácido Cacodílico/análogos & derivados , Sulfeto de Hidrogênio/química , Poluentes Químicos da Água/química , Ácido Cacodílico/química , Monitoramento Ambiental , Instalações de Eliminação de Resíduos
5.
Heliyon ; 10(10): e30858, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813215

RESUMO

Microplastics (MPs) are pervasive pollutants exuded from anthropogenic activities and ingested by animals in different ecosystems. This transcriptomic profiling study aimed to explore the impact of polyethylene MPs on Mytilus galloprovincialis, an ecologically significant bivalve species. The toxicity of two MPs types was found to result in increased cellular stress when exposed up to 14 days. Moreover, recovery mechanisms were also observed in progress. Mussels exhibited different gene expression patterns and molecular regulation in response to cellular reactive oxygen species (ROS) stress. The transcriptome analysis demonstrated a notable hindrance in cilia movement as MPs ingested through gills. Subsequent entry resulted in a significant disruption in the cytoskeletal organization, cellular projection, and cilia beat frequency. On day 4 (D4), signal transduction and activation of apoptosis evidenced the signs of toxic consequences. Mussels exposed to spherical MPs shown significant recovery on day 14 (D14), characterized by the upregulation of anti-apoptotic genes and antioxidant genes. The expression of P53 and BCL2 genes was pivotal in controlling the apoptotic process and promoting cell survival. Mussels exposed to fibrous MPs displayed a delayed cell survival effect. However, the elevated physiological stress due to fibrous MPs resulted in energy transfer by compensatory regulation of metabolic processes to expedite cellular recovery. These observations highlighted the intricate and varied reaction of cell survival mechanisms in mussels to recover toxicity. This study provides critical evidence of the ecotoxicological impacts of two different MPs and emphasizes the environmental risks they pose to aquatic ecosystems. Our conclusion highlights the detrimental effects of MPs on M. galloprovincialis and the need for more stringent regulations to protect marine ecosystems.

6.
Sci Prog ; 106(2): 368504231173835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166965

RESUMO

This study assessed the interactive changes to the endocrine disruptor 17 alpha-ethynylestradiol (EE2) triggered by photoaging onto fibrous microplastics frequently found in the environment. The physicochemical property change of the polyethylene (PE) microfiber according to irradiation (i.e. 14 d UV-C (254 nm)) was studied through Fourier transform infrared spectroscopy, scanning electron microscope, and contact angle analysis. Additionally, the EE2 adsorption kinetics experiment was performed for the PE microfiber before and after UV irradiation to assess the change in adsorption characteristics. After UV irradiation, the PE microfiber surface roughness increased, the oxygen-containing functional group (e.g. carbonyl group) increased, and the contact angle (virgin PE: 80.02°, aged PE: 65.13°) decreased. A decrease in the surface hydrophobicity led to a decrease in the adsorption rate of EE2 (virgin PE: k = 0.0105 h-1, aged PE: not calculated). The hydrophobic interaction significantly affects the adsorption behavior of hydrophobic organic pollutants such as EE2 onto MPs, and continuous photo-aging of MPs may cause a new pattern of ecological risk. Therefore, there is a greater necessity for additional research relevant to this issue.

7.
Sci Total Environ ; 892: 164554, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37270013

RESUMO

The upstream of Nakdong River is contaminated by heavy metals such as Cd, Cu, Zn, As, and Pb. Although the origin of the contamination is unequivocal, it is suspected that the heavy metals have been leached from several mine tailings and a refinery. Here, receptor models, absolute principal component score (APCS) and positive matrix factorization (PMF), were used to identify the contamination sources. Source markers representing each source (factor) were investigated using correlation analysis for five major contaminants (Cd, Zn, As, Pb, and Cu) and identified as following: Cd and Zn for the refinery (factor 1), As for mine tailings (factor 2). The categorization of sources into two factors was statistically validated via the cumulative proportion and APCS-based KMO test score with the values >90 % and > 0.7 (p < 0.001), respectively. High R2 values of linear regressions between the predicted data from receptor models and observed data indicate the reliability of the model prediction; moreover, the predicted initial concentrations of contaminants were validated using a sediment sample collected from near the refinery (chi-test: p > 0.200). Concentration distribution and source contribution using GIS revealed the heavy metal contaminated zones affected by the precipitation.


Assuntos
Metais Pesados , Poluentes do Solo , Monitoramento Ambiental , Rios , Cádmio/análise , Chumbo/análise , Reprodutibilidade dos Testes , Poluentes do Solo/análise , Metais Pesados/análise , República da Coreia , China , Medição de Risco
8.
Chemosphere ; 344: 140350, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37793548

RESUMO

Assessment of inorganic arsenate (As(V)) is critical for ensuring a sustainable environment because of its adverse effects on humans and ecosystems. This study is the first to attempt to predict As(V) toxicity to the bioluminescent bacterium Aliivibrio fischeri exposed to varying As(V) dosages and environmental factors (pH and phosphate concentration) using six machine learning (ML)-guided models. The predicted toxicity values were compared with those predicted using the extended biotic ligand model (BLM) we previously developed to evaluate the toxic effect of oxyanion (i.e., As(V)). The relationship between the variables (input features) and toxicity (output) was found to play an important role in the prediction accuracy of each ML-guided model. The results indicated that the extended BLM had the highest prediction accuracy, with a root mean square error (RMSE) of 12.997. However, with an RMSE of 14.361, the multilayer perceptron (MLP) model exhibited quasi-accurate prediction, despite having been trained with a relatively small dataset (n = 256). In view of simplicity, an MLP model is compatible with an extended BLM and does not require expert knowledge for the derivation of specific parameters, such as binding fraction and binding constant values. Furthermore, with the development and employment of reliable in-situ sensing techniques, monitoring data are expected to be augmented faster to provide sufficient training data for the improvement of prediction accuracy which may, thus, allow it to outperform the extended BLM after obtaining sufficient data.


Assuntos
Arseniatos , Ecossistema , Humanos , Arseniatos/toxicidade , Ligantes , Aliivibrio fischeri
9.
Artigo em Inglês | MEDLINE | ID: mdl-36767273

RESUMO

The unified bioaccessibility research group of Europe (BARGE) method (UBM) suggests using in vitro experimental conditions for simulating the release of chemicals from confined matrices, such as soils and sediments, in the human gastrointestinal tract. It contains comprehensive steps that simulate human digestion pathways and has good potential for application in the leaching of plastic additives from accidentally ingested plastic particles. However, its complexity could be a challenge for routine screening assessments of the migration of chemicals from consumer plastic products. In this study, the UBM was modified to assess the migration of plastic additives from consumer products with five model phthalate esters (i.e., dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DNOP)) from polyvinyl chloride (PVC). The migration of phthalate esters was observed in four digestive phases (saliva, gastric, duodenal, and bile). Three separate experiments were conducted with the addition of (1) inorganic constituents only, (2) inorganic and organic constituents, and (3) inorganic and organic constituents in combination with digestive enzymes. While using enzymes with the UBM solution, the migrated mass for leached compounds was comparatively low (0.226 ± 0.04 µg) in most digestion phases, likely due to a self-generated coating of enzymes on the plastic materials. However, higher mass migration (0.301 ± 0.05) was observed when phthalate esters were analyzed in the UBM solution, excluding the enzymes. A ring test among six independent laboratories confirmed the robustness of the modified method. Therefore, we propose a simplified version of the original UBM designed mainly for the migration of inorganic elements using only the inorganic and organic components of the solution throughout all phases of digestion.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Ésteres , Dibutilftalato , Plásticos , Solo
10.
Toxics ; 10(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35202264

RESUMO

Arsenic is a metalloid that is highly toxic to living organisms in the environment. In this study, toxicity caused by inorganic arsenate (As(V)) to terrestrial plants, such as barley Hordeum vulgare and wheat Triticum aestivum, was predicted using the existing biotic ligand model (BLM) for bioluminescent Aliivibrio fischeri via interspecies extrapolation. Concurrently, the concept of cell plasma membrane electrical potential (Ψ0) was incorporated into the extrapolated BLM to improve the model predictability in the presence of major cations such as Ca2+. The 50% effective As(V) toxicity (EC50{HAsO42-}) to H. vulgare decreased from 45.1 ± 4.34 to 15.0 ± 2.60 µM as Ca2+ concentration increased from 0.2 to 20 mM owing to the accumulation of H2AsO4- and HAsO42- on the cell membrane surface. The extrapolated BLM, which only considered inherent sensitivity, explained well the alteration of As(V) toxicity to H. vulgare and T. aestivum by Ca2+ with in an order of magnitude, when considering a linear relationship between Ψ0 and EC50{HAsO42-}.

11.
Sci Total Environ ; 828: 154495, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278551

RESUMO

The biotic ligand model (BLM) was applied to derive ecotoxicologically acceptable Cu concentrations at 12 monitoring stations in the Han River Basin, South Korea, considering temporal variations in water characteristics. During the monitoring period, pH, dissolved organic carbon (DOC), and water temperature varied instantaneously, resulting in spatiotemporal variations in the half-maximal effective concentrations (EC50[Cu]T) of Daphnia magna. The effect of dissolved Ca2+ concentration was evaluated to determinate EC50[Cu]T using the Visual MINTEQ 3.1 speciation model. Dissolved Ca2+ concentration was directly proportional to EC50[Cu]T values, indicating that a higher Ca2+ in the solution will result in the lesser toxic effects on D. magna due to the competition between Ca2+ and Cu2+ ions. The Ca2+ concentration was set at 0.4 mM while deriving EC50[Cu]T, which is the geometric mean concentration in the Han River Basin. The lower confidence limit (LCL) of EC50[Cu]T was 28.7-67.8 µg/L in the monitoring stations. Among the water characteristics, DOC was more strongly positively correlated with EC50[Cu]T than that with pH and temperature. DOC concentration was significantly related to Cu2+ activity, pH was less explicitly related to EC50[Cu]T than to DOC, and water temperature had the weakest correlation coefficient. Compared to the 5% hazardous concentration (HC5) derived from the toxicity data for 171 aquatic species and Cu criteria in different countries, the computed LCL concentrations had similar orders of magnitude. With more information on actual Ca2+ concentrations at monitoring sites, a more accurate Cu concentration that reflects spatiotemporal variations of water characteristics can be obtained.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Cobre/análise , Daphnia , Concentração de Íons de Hidrogênio , Ligantes , Água , Poluentes Químicos da Água/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-35162803

RESUMO

Fluorine (F) enrichment originating from natural sources is difficult to remove using chemical washing methods due to the large chemical-resistant residual fraction. This study evaluates the feasibility of using a froth-flotation separation method to remediate soil with a high F concentration caused by mica weathering, and it investigates the optimal conditions for this process, including pH of the slurry, collector dosage, and sample mechanical preparation strategy. The established optimum conditions are pH 3.5, 300 mg/kg collector dosage (tallow amine acetate), which can effectively separate quartz and mica, and a sieving-and-milling strategy that involves discarding particles of size < 0.05 mm, milling those in the range of 0.5-2.0 mm (until < approx. 0.3 mm), and mixing particles with sizes in the range of 0.05-0.5 mm. The target contamination level of 400 mg/kg for the test soil was not met after the first flotation separation process. However, after milling the residue of the first process and subjecting it to a second flotation separation process, the required contamination level was achieved. Consequently, the proposed froth-flotation separation process can be used as a successful alternative technique to remediate F-enriched soils from natural origin that have highly chemical-resistant forms.


Assuntos
Flúor , Solo , Silicatos de Alumínio , Quartzo
13.
Chemosphere ; 305: 135431, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35738406

RESUMO

The mobility of arsenic (As) in soil is highly affected by the change in the form of iron oxides present in the soil, which has a strong correlation with the change in redox potential. In this study, the altered mobility of As under repetitive redox conditions and the effect of organic substrates (i.e., glucose) on such change during four anoxic-oxic cycles were studied. During the 1st anoxic period, 37.1% of soil As was released into the soil solution, but the As in the soil solution decreased to 25.2% after the 1st oxic period. Moreover, the As in the soil solution further decreased during the 2nd to 4th oxic periods, indicating further re-adsorption of aqueous As. The analysis of As speciation revealed that inorganic arsenate (As(V)) increased under the redox-oscillating conditions, probably due to the depletion of electron donors. When glucose was re-spiked at the beginning of the 4th cycle, aqueous As increased to 47.3% again in the anoxic period and decreased to 27.6% in the subsequent oxic period, indicating inhibition of As re-adsorption. During the same period, the amount of highly sorptive As(V) in the solution decreased sharply to less than 3.3%. The X-ray absorption near edge structure analysis with linear combination fitting confirmed that the transformation of Fe oxides to poorly crystalline structures such as ferrihydrite occurred during repetitive cycles. These results imply that the mobility of As can be increased in As-contaminated redox transition zones by the introduction of rainfall with labile organics or by the fluctuation of organic-rich groundwater.


Assuntos
Arsênio , Arsênio/química , Compostos Férricos/química , Glucose , Oxirredução , Óxidos , Solo , Solubilidade , Água
14.
Artigo em Inglês | MEDLINE | ID: mdl-35329092

RESUMO

Subsurface VOC monitoring has been mainly based on manual sampling, transport, and analysis, which would require a sufficient amount of samples to ensure data accuracy and reliability, and additional costs to ensure sample quality. Therefore, a continuous on-site monitoring system is desirable for accurate measurement and subsequent risk assessment. In this study, benzene, toluene, ethylbenzene, and xylene (BTEX) were continuously monitored by the system based on a thermal desorber (TD) and gas chromatography (GC) in an oil-contaminated site that consisted of saturated and unsaturated zones. For the saturated zone, fully automated groundwater sampling and purging processes were performed, and the gasified samples were applied to the TD-GC system. For the unsaturated zone, the gaseous sample in the site was directly applied to the TD-GC system. After verifying the accuracy and precision of the monitoring system, the continuous monitoring system was successfully operated for more than a month in the field. The monitoring system used in this study is applicable to other sites for continuous monitoring, thus providing a scientific background for advanced risk assessment and policy development.


Assuntos
Derivados de Benzeno , Xilenos , Benzeno/análise , Derivados de Benzeno/análise , Cromatografia Gasosa , Monitoramento Ambiental/métodos , Reprodutibilidade dos Testes , Tolueno/análise , Xilenos/análise
15.
Sci Total Environ ; 852: 158531, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063923

RESUMO

Although recent studies have revealed the occurrence of dimethylated arsenicals, little is known about their behavior in environment. This study investigates the adsorption behavior of dimethylarsinic acid (DMAV), dimethyldithioarsinic acid (DMDTAV), and dimethylmonothioarsinic acid (DMMTAV) on montmorillonite. Complicated transformations among arsenicals under normal environmental conditions were also considered. Our results clearly demonstrate that DMDTAV was oxidized to DMMTAV, which was relatively stable but partially transformed to DMAV when exposed to air during adsorption. The transformed DMAV exhibited high adsorption affinities for montmorillonite, while DMMTAV and DMDTAV were not appreciably retained by montmorillonite for 48 h. This is the first study to provide insights into DMDTAV oxidation under environmental conditions. X-ray absorption near edge structure and extended X-ray absorption fine structure studies confirmed that most of the adsorbed arsenicals on montmorillonite were DMAV. The significantly different bonding characteristics of each adsorbed DMAV provide direct evidence for the transformation of DMAV from DMDTAV and DMMTAV. Our study suggests the importance of incorporating the DMMTAV in the realistic risk management for soil environments because it is highly toxic, easily transformed from DMDTAV, and stable in the environment.


Assuntos
Arsenicais , Ácido Cacodílico , Ácido Cacodílico/toxicidade , Bentonita , Espectroscopia por Absorção de Raios X , Solo
16.
Toxics ; 10(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422911

RESUMO

In this study, the adsorption characteristics of dimethylated arsenicals to rice husk biochar (BC) and Fe/biochar composite (FeBC) were assessed through isothermal adsorption experiments and X-ray absorption spectroscopy analysis. The maximal adsorption capacities (qm) of inorganic arsenate, calculated using the Langmuir isotherm equation, were 1.28 and 6.32 mg/g for BC and FeBC, respectively. Moreover, dimethylated arsenicals did not adsorb to BC at all, and in the case of FeBC, qm values of dimethylarsinic acid (DMA(V)), dimethylmonothioarsinic acid (DMMTA(V)), and dimethyldithioarsinic acid (DMDTA(V)) were calculated to be 7.08, 0.43, and 0.28 mg/g, respectively. This was due to the formation of iron oxide (i.e., two-line ferrihydrite) on the surface of BC. Linear combination fitting using As K-edge X-ray absorption near edge structure spectra confirmed that all chemical forms of dimethylated arsenicals adsorbed on the two-line ferrihydrite were DMA(V). Thus, FeBC could retain highly mobile and toxic arsenicals such as DMMTA(V) and DMDTA(V)) in the environment, and transform them into DMA(V) with relatively low toxicity.

17.
J Hazard Mater ; 402: 123763, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254776

RESUMO

Consideration of livestock farming practices is necessary for the reliable prediction of veterinary antibiotics concentrations in livestock manure and soil and characterization of their ecological risks. This study aims to predict concentrations of chlortetracycline (CTC) generated from slurry pit and evaluate its ecological risk in soil based on the European Medicine Agency guidelines by considering slurry pit farm practices such as cleaning water volume and those uncertainties. Additionally, sensitivity analysis was conducted on the exposure estimation of CTC in soil employing the Monte Carlo simulation. The predicted environmental concentrations of CTC in the slurry pit and soil were in a range of 0.54-5.64 mg/kgmanure and 3.42-67.59 µg/kgsoil, respectively, for a 90 % confidence level. The predicted ranges included the measured values reported in previous studies. The probability of risk quotient (RQ) exceeding one was estimated at 9.3 % based on the Monte Carlo simulation. The four most influential factors on the exposure to CTC in soil were identified as nitrogen in fertilizer/compost, cleaning water volume, ratio of sick pigs requiring antibiotics, and pit emptying cycles. The results indicate that the ecological risk of CTC in the soil is possible and can be controlled by slurry pit farm practices.


Assuntos
Clortetraciclina , Esterco , Agricultura , Animais , Antibacterianos , Fazendas , Solo , Suínos , Incerteza
18.
J Hazard Mater ; 385: 121619, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31757723

RESUMO

Biotic ligand model (BLM) was extended to predict the toxicity of inorganic arsenate (iAs(V)) to the luminescent bacteria, Aliivibrio fischeri. As the pH increased from 5 to 9, the HAsO42- form predominated more than the H2AsO4- form did, and the EC50[As]T (50% effective iAs(V) concentration) decreased drastically from 3554 ±â€¯393 to 39 ±â€¯6 µM; thus, the HAsO42- form was more toxic to A. fischeri than H2AsO4-. As the HPO42- activity increased from 0 to 0.44 mM, the EC50{HAsO42-} values (50% effective HAsO42- activity) increased from 31 ±â€¯6 to 859 ±â€¯128 µM, indicating that the toxicity of iAs(V) decreased, owing to the competition caused by the structural similarity between iAs(V) and phosphate ions. However, activities of Ca2+, Mg2+, K+, SO42-, NO3-, and HCO3- did not significantly affect the EC50{HAsO42-} values. The BLM was reconstructed to take into account the effects of pH and phosphate, and the conditional binding constants for H2PO4-, HPO42-, H2AsO4-, and HAsO42- to the active binding sites of A. fischeri were obtained; 3.424 for logKXH2PO4, 4.588 for logKXHPO4, 3.067 for logKXH2AsO4, and 4.802 for logKXHAsO4. The fraction of active binding sites occupied by iAs(V) to induce 50% toxicity (fmix50%) was found to be 0.616.


Assuntos
Arseniatos/toxicidade , Concentração de Íons de Hidrogênio , Modelos Biológicos , Modelos Químicos , Fosfatos/química , Poluentes do Solo/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Ligantes
19.
Sci Total Environ ; 745: 140989, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32738685

RESUMO

The bioaccessibility of As in soil, rather than its total concentration, is closely related to its potential risk. In this study, the in situ formation of amorphous Fe oxides was applied to As-contaminated soil to induce As-Fe coprecipitates that can withstand the gastric digestion condition of human beings. To promote the formation of Fe oxides, 2% ferric nitrate (w/w) and 30% water (v/w) were introduced, and the pH was adjusted to ~7. The chemical extractability of As in soil was determined using the solubility/bioavailability research consortium method and five-step sequential extraction. In situ formation of Fe oxides resulted in a remarkable increase in the As associated with amorphous Fe oxides, decreasing most of the exchangeable As (i.e., the sum of SO42- and PO43- extractable As), and thereby reducing the bioaccessibility of As. The types of association between As and Fe oxides were investigated using X-ray absorption spectroscopy analysis. Linear combination fit (LCF) analysis demonstrated that As bound to amorphous Fe oxides could exist as coprecipitates with ferrihydrite and schwertmannite after stabilization. The bioaccessibility of the coprecipitated As in soil further decreased as amorphous Fe oxides transformed to crystalline form with time, which was supported by the LCF results showing an increase of goethite in aged soil.

20.
Sci Total Environ ; 743: 140686, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32673914

RESUMO

The bioaccessibility of heavy metals in soil is closely related to their potential risk. Therefore, developing techniques for reducing it needs considerable attention. In this study, we aimed to co-precipitate soil As(V) through an in situ formation of Fe oxides, thereby reducing its bioaccessibility. Soil As(V) was co-precipitated by introducing 2% Fe-nitrate (w/w) and 30% water (v/w) into soil at pH ~7. Two different neutralizing agents (NaOH and CaO) were used to induce the precipitation of Fe oxides, and their effects on the speciation of As were investigated. In all the stabilized soils, the exchangeable As fraction decreased, and the fraction of As bound to amorphous Fe oxides increased by a factor of more than 1.4. In contrast, a marked decrease in bioaccessibility of As was achieved using NaOH (40% to 7%). X-ray absorption spectroscopy analysis demonstrated that highly bioaccessible forms of calcium iron arsenate (yukonite and arseniosiderite) could be generated in CaO-stabilized soil. Our study found that neutralizing agents may play an important role in stabilizing As(V) and lowering its bioaccessibility through determining the type of formed Fe oxides in soil.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa