Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 504, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840239

RESUMO

The domestication process in grapevines has facilitated the fixation of desired traits. Nowadays, vegetative propagation through cuttings enables easier preservation of these genotypes compared to sexual reproduction. Nonetheless, even with vegetative propagation, various phenotypes are often present within the same vineyard due to the accumulation of somatic mutations. These mutations are not the sole factors influencing phenotype. Alongside somatic variations, epigenetic variation has been proposed as a pivotal player in regulating phenotypic variability acquired during domestication. The emergence of these epialleles might have significantly influenced grapevine domestication over time. This study aims to investigate the impact of domestication on methylation patterns in cultivated grapevines. Reduced-representation bisulfite sequencing was conducted on 18 cultivated and wild accessions. Results revealed that cultivated grapevines exhibited higher methylation levels than their wild counterparts. Differential Methylation Analysis between wild and cultivated grapevines identified a total of 9955 differentially methylated cytosines, of which 78% were hypermethylated in cultivated grapevines. Functional analysis shows that core methylated genes (consistently methylated in both wild and cultivated accessions) are associated with stress response and terpenoid/isoprenoid metabolic processes. Meanwhile, genes with differential methylation are linked to protein targeting to the peroxisome, ethylene regulation, histone modifications, and defense response. Collectively, our results highlight the significant roles that epialleles may have played throughout the domestication history of grapevines.


Assuntos
Produtos Agrícolas , Metilação de DNA , Domesticação , Epigênese Genética , Vitis , Vitis/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Fenótipo
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33853939

RESUMO

Most autosomal genes in the placenta show a biallelic expression pattern. However, some genes exhibit allele-specific transcription depending on the parental origin of the chromosomes on which the copy of the gene resides. Parentally expressed genes are involved in the reciprocal interaction between maternal and paternal genes, coordinating the allocation of resources between fetus and mother. One of the main challenges of studying parental-specific allelic expression (allele-specific expression [ASE]) in the placenta is the maternal cellular remnant at the fetomaternal interface. Horses (Equus caballus) have an epitheliochorial placenta in which both the endometrial epithelium and the epithelium of the chorionic villi are juxtaposed with minimal extension into the uterine mucosa, yet there is no information available on the allelic gene expression of equine chorioallantois (CA). In the current study, we present a dataset of 1,336 genes showing ASE in the equine CA (https://pouya-dini.github.io/equine-gene-db/) along with a workflow for analyzing ASE genes. We further identified 254 potentially imprinted genes among the parentally expressed genes in the equine CA and evaluated the expression pattern of these genes throughout gestation. Our gene ontology analysis implies that maternally expressed genes tend to decrease the length of gestation, while paternally expressed genes extend the length of gestation. This study provides fundamental information regarding parental gene expression during equine pregnancy, a species with a negligible amount of maternal cellular remnant in its placenta. This information will provide the basis for a better understanding of the role of parental gene expression in the placenta during gestation.


Assuntos
Impressão Genômica/genética , Cavalos/genética , Placentação/genética , Alelos , Animais , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Impressão Genômica/fisiologia , Cavalos/metabolismo , Placenta/metabolismo , Gravidez
3.
BMC Bioinformatics ; 23(1): 33, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016614

RESUMO

BACKGROUND: The recent advancements in high-throughput sequencing have resulted in the availability of annotated genomes, as well as of multi-omics data for many living organisms. This has increased the need for graphic tools that allow the concurrent visualization of genomes and feature-associated multi-omics data on single publication-ready plots. RESULTS: We present chromoMap, an R package, developed for the construction of interactive visualizations of chromosomes/chromosomal regions, mapping of any chromosomal feature with known coordinates (i.e., protein coding genes, transposable elements, non-coding RNAs, microsatellites, etc.), and chromosomal regional characteristics (i.e. genomic feature density, gene expression, DNA methylation, chromatin modifications, etc.) of organisms with a genome assembly. ChromoMap can also integrate multi-omics data (genomics, transcriptomics and epigenomics) in relation to their occurrence across chromosomes. ChromoMap takes tab-delimited files (BED like) or alternatively R objects to specify the genomic co-ordinates of the chromosomes and elements to annotate. Rendered chromosomes are composed of continuous windows of a given range, which, on hover, display detailed information about the elements annotated within that range. By adjusting parameters of a single function, users can generate a variety of plots that can either be saved as static image or as HTML documents. CONCLUSIONS: ChromoMap's flexibility allows for concurrent visualization of genomic data in each strand of a given chromosome, or of more than one homologous chromosome; allowing the comparison of multi-omic data between genotypes (e.g. species, varieties, etc.) or between homologous chromosomes of phased diploid/polyploid genomes. chromoMap is an extensive tool that can be potentially used in various bioinformatics analysis pipelines for genomic visualization of multi-omics data.


Assuntos
Genômica , Software , Cromossomos/genética , Biologia Computacional , Genoma
4.
Hortic Res ; 8(1): 137, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059643

RESUMO

Transfer RNAs (tRNA) are crucial adaptor molecules between messenger RNA (mRNA) and amino acids. Recent evidence in plants suggests that dicistronic tRNA-like structures also act as mobile signals for mRNA transcripts to move between distant tissues. Co-transcription is not a common feature in the plant nuclear genome and, in the few cases where polycistronic transcripts have been found, they include non-coding RNA species, such as small nucleolar RNAs and microRNAs. It is not known, however, the extent to which dicistronic transcripts of tRNA and mRNAs are expressed in field-grown plants, or the factors contributing to their expression. We analysed tRNA-mRNA dicistronic transcripts in the major horticultural crop grapevine (Vitis vinifera) using a novel pipeline developed to identify dicistronic transcripts from high-throughput RNA-sequencing data. We identified dicistronic tRNA-mRNA in leaf and berry samples from 22 commercial vineyards. Of the 124 tRNA genes that were expressed in both tissues, 18 tRNA were expressed forming part of 19 dicistronic tRNA-mRNAs. The presence and abundance of dicistronic molecules was tissue and geographic sub-region specific. In leaves, the expression patterns of dicistronic tRNA-mRNAs significantly correlated with tRNA expression, suggesting that their transcriptional regulation might be linked. We also found evidence of syntenic genomic arrangements of tRNAs and protein-coding genes between grapevine and Arabidopsis thaliana, and widespread prevalence of dicistronic tRNA-mRNA transcripts among vascular land plants but no evidence of these transcripts in non-vascular lineages. This suggests that the appearance of plant vasculature and tRNA-mRNA occurred concurrently during the evolution of land plants.

5.
PLoS One ; 14(4): e0208214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31026262

RESUMO

Micronutrient deficiency is the cause of multiple diseases in developing countries. Staple crop biofortification is an efficient means to combat such deficiencies in the diets of local consumers. Biofortified lines of sweet potato (Ipomoea batata L. Lam) with enhanced beta-carotene content have been developed in Ghana to alleviate Vitamin A Deficiency. These genotypes are propagated using meristem micropropagation to ensure the generation of virus-free propagules. In vitro culture exposes micropropagated plants to conditions that can lead to the accumulation of somaclonal variation with the potential to generate unwanted aberrant phenotypes. However, the effect of micropropagation induced somaclonal variation on the production of key nutrients by field-grown plants has not been previously studied. Here we assessed the extent of in vitro culture induced somaclonal variation, at a phenotypic, compositional and genetic/epigenetic level, by comparing field-maintained and micropropagated lines of three elite Ghanaian sweet potato genotypes grown in a common garden. Although micropropagated plants presented no observable morphological abnormalities compared to field maintained lines, they presented significantly lower levels of iron, total protein, zinc, and glucose. Methylation Sensitive Amplification Polymorphism analysis showed a high level of in vitro culture induced molecular variation in micropropagated plants. Epigenetic, rather than genetic variation, accounts for most of the observed molecular variability. Taken collectively, our results highlight the importance of ensuring the clonal fidelity of the micropropagated biofortified lines in order to reduce potential losses in the nutritional value prior to their commercial release.


Assuntos
Biofortificação , Metilação de DNA , Ipomoea batatas/genética , Biofortificação/métodos , DNA de Plantas/genética , Gana , Humanos , Ipomoea batatas/metabolismo , Valor Nutritivo , Deficiência de Vitamina A/prevenção & controle , beta Caroteno/metabolismo
6.
Sci Rep ; 8(1): 11031, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038409

RESUMO

A network consisting of 45 core genes was developed for the genes/proteins responsible for loss/gain of function in human pluripotent stem cells. The nodes were included on the basis of literature curation. The initial network topology was further refined by constructing an inferred Boolean model from time-series RNA-seq expression data. The final Boolean network was obtained by integration of the initial topology and the inferred topology into a refined model termed as the integrated model. Expression levels were observed to be bi-modular for most of the genes involved in the mechanism of human pluripotency. Thus, single and combinatorial perturbations/knockdowns were executed using an in silico approach. The model perturbations were validated with literature studies. A number of outcomes are predicted using the knockdowns of the core pluripotency circuit and we are able to establish the minimum requirement for maintenance of pluripotency in human. The network model is able to predict lineage-specific outcomes and targeted knockdowns of essential genes involved in human pluripotency which are challenging to perform due to ethical constraints surrounding human embryonic stem cells.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Perfilação da Expressão Gênica , Humanos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa