Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7948): 479-485, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792735

RESUMO

Thwaites Glacier is one of the fastest-changing ice-ocean systems in Antarctica1-3. Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland4, making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre2,3,5. The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat3,6, both of which are largely unknown. Here we show-using observations from a hot-water-drilled access hole-that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice-ocean boundary layer actively restrict the vertical mixing of heat towards the ice base7,8, resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates.

2.
Nature ; 453(7196): 770-4, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18528392

RESUMO

Long-period seismic sources associated with glacier motion have been recently discovered, and an increase in ice flow over the past decade has been suggested on the basis of secular changes in such measurements. Their significance, however, remains uncertain, as a relationship to ice flow has not been confirmed by direct observation. Here we combine long-period surface-wave observations with simultaneous Global Positioning System measurements of ice displacement to study the tidally modulated stick-slip motion of the Whillans Ice Stream in West Antarctica. The seismic origin time corresponds to slip nucleation at a region of the bed of the Whillans Ice Stream that is likely stronger than in surrounding regions and, thus, acts like an 'asperity' in traditional fault models. In addition to the initial pulse, two seismic arrivals occurring 10-23 minutes later represent stopping phases as the slip terminates at the ice stream edge and the grounding line. Seismic amplitude and average rupture velocity are correlated with tidal amplitude for the different slip events during the spring-to-neap tidal cycle. Although the total seismic moment calculated from ice rigidity, slip displacement, and rupture area is equivalent to an earthquake of moment magnitude seven (M(w) 7), seismic amplitudes are modest (M(s) 3.6-4.2), owing to the source duration of 20-30 minutes. Seismic radiation from ice movement is proportional to the derivative of the moment rate function at periods of 25-100 seconds and very long-period radiation is not detected, owing to the source geometry. Long-period seismic waves are thus useful for detecting and studying sudden ice movements but are insensitive to the total amount of slip.

3.
Science ; 322(5906): 1344, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19039129

RESUMO

A major problem for ice-sheet models is that no physically based law for the calving process has been established. Comparison across a diverse set of ice shelves demonstrates that iceberg calving increases with the along-flow spreading rate of a shelf. This relation suggests that frictional buttressing loss, which increases spreading, also leads to shelf retreat, a process known to accelerate ice-sheet flow and contribute to sea-level rise.

4.
Science ; 315(5820): 1838-41, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17332377

RESUMO

Sedimentation filling space beneath ice shelves helps to stabilize ice sheets against grounding-line retreat in response to a rise in relative sea level of at least several meters. Recent Antarctic changes thus cannot be attributed to sea-level rise, strengthening earlier interpretations that warming has driven ice-sheet mass loss. Large sea-level rise, such as the approximately 100-meter rise at the end of the last ice age, may overwhelm the stabilizing feedback from sedimentation, but smaller sea-level changes are unlikely to have synchronized the behavior of ice sheets in the past.

5.
Science ; 315(5820): 1835-8, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17332378

RESUMO

We report on the discovery of a grounding-line sedimentary wedge ("till delta") deposited by Whillans Ice Stream, West Antarctica. Our observation is that grounding-line deposition serves to thicken the ice and stabilize the position of the grounding line. The ice thickness at the grounding line is greater than that of floating ice in hydrostatic equilibrium. Thus, the grounding line will tend to remain in the same location despite changes in sea level (until sea level rises enough to overcome the excess thickness that is due to the wedge). Further, our observation demonstrates the occurrence of rapid subglacial erosion, sediment transport by distributed subglacial till deformation, and grounding-line sedimentation, which have important implications for ice dynamics, numerical modeling of ice flow, and interpretation of the sedimentation record.

6.
Science ; 301(5636): 1087-9, 2003 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-12934005

RESUMO

A major West Antarctic ice stream discharges by sudden and brief periods of very rapid motion paced by oceanic tidal oscillations of about 1 meter. Acceleration to speeds greater than 1 meter per hour and deceleration back to a stationary state occur in minutes or less. Slip propagates at approximately 88 meters per second, suggestive of a shear wave traveling within the subglacial till. A model of an episodically slipping friction-locked fault reproduces the observed quasi-periodic event timing, demonstrating an ice stream's ability to change speed rapidly and its extreme sensitivity to subglacial conditions and variations in sea level.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa