Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264212

RESUMO

Climate change due to anthropogenic CO2 emissions affects plant performance globally. To improve crop resilience, we need to understand the effects of elevated CO2 concentration (e[CO2]) on CO2 assimilation and Rubisco biochemistry. However, the interactive effects of e[CO2] and abiotic stress are especially unclear. This study analyses the CO2 effect on photosynthetic capacity under different water availability and temperature conditions in 42 different crop species, varying in functional group, photosynthetic pathway and phenological stage. We analysed close to 3000 data points extracted from 120 published manuscripts. For C3 species, e[CO2] increases net photosynthesis and intercellular [CO2], while reducing stomatal conductance and transpiration. Vmaxc, Rubisco in vitro extractable maximal activity and content also decrease with e[CO2] in C3 species, while C4 crops are less responsive to e[CO2]. The interaction with drought and/or heat stress does not significantly alter these photosynthetic responses, indicating that the photosynthetic capacity of stressed plants responds to e[CO2]. Moreover, e[CO2] has strong effect on the photosynthetic capacity of grasses mainly in the final stages of development. This study provides insight into the intricate interactions within the plant photosynthetic apparatus under the influence of climate change, enhancing the understanding of mechanisms governing plant responses to environmental parameters.

2.
J Exp Bot ; 72(13): 4949-4964, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33963398

RESUMO

In plants, there is a complex interaction between carbon (C) and nitrogen (N) metabolism, and its coordination is fundamental for plant growth and development. Here, we studied the influence of thioredoxin (Trx) m on C and N partitioning using tobacco plants overexpressing Trx m from the chloroplast genome. The transgenic plants showed altered metabolism of C (lower leaf starch and soluble sugar accumulation) and N (with higher amounts of amino acids and soluble protein), which pointed to an activation of N metabolism at the expense of carbohydrates. To further delineate the effect of Trx m overexpression, metabolomic and enzymatic analyses were performed on these plants. These results showed an up-regulation of the glutamine synthetase-glutamate synthase pathway; specifically tobacco plants overexpressing Trx m displayed increased activity and stability of glutamine synthetase. Moreover, higher photorespiration and nitrate accumulation were observed in these plants relative to untransformed control plants, indicating that overexpression of Trx m favors the photorespiratory N cycle rather than primary nitrate assimilation. Taken together, our results reveal the importance of Trx m as a molecular mediator of N metabolism in plant chloroplasts.


Assuntos
Tiorredoxinas de Cloroplastos , Nicotiana , Carbono/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
3.
J Exp Bot ; 70(3): 1005-1016, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30476130

RESUMO

The activity of the protein kinase STN7, involved in phosphorylation of the light-harvesting complex II (LHCII) proteins, has been reported as being co-operatively regulated by the redox state of the plastoquinone pool and the ferredoxin-thioredoxin (Trx) system. The present study aims to investigate the role of plastid Trxs in STN7 regulation and their impact on photosynthesis. For this purpose, tobacco plants overexpressing Trx f or m from the plastid genome were characterized, demonstrating that only Trx m overexpression was associated with a complete loss of LHCII phosphorylation that did not correlate with decreased STN7 levels. The absence of phosphorylation in Trx m-overexpressing plants impeded migration of LHCII from PSII to PSI, with the concomitant loss of PSI-LHCII complex formation. Consequently, the thylakoid ultrastructure was altered, showing reduced grana stacking. Moreover, the electron transport rate was negatively affected, showing an impact on energy-demanding processes such as the Rubisco maximum carboxylation capacity and ribulose 1,5-bisphosphate regeneration rate values, which caused a strong depletion in net photosynthetic rates. Finally, tobacco plants overexpressing a Trx m mutant lacking the reactive redox site showed equivalent physiological performance to the wild type, indicating that the overexpressed Trx m deactivates STN7 in a redox-dependent way.


Assuntos
Tiorredoxinas de Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/enzimologia , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Nicotiana/enzimologia , Nicotiana/metabolismo
4.
J Exp Bot ; 69(15): 3661-3673, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29912355

RESUMO

The leaf mesophyll CO2 conductance and the concentration of CO2 within the chloroplast are major factors affecting photosynthetic performance. Previous studies have shown that the aquaporin NtAQP1 (which localizes to the plasma membrane and chloroplast inner envelope membrane) is involved in CO2 permeability in the chloroplast. Levels of NtAQP1 in plants genetically engineered to overexpress the protein correlated positively with leaf mesophyll CO2 conductance and photosynthetic rate. In these studies, the nuclear transformation method used led to changes in NtAQP1 levels in the plasma membrane and the chloroplast inner envelope membrane. In the present work, NtAQP1 levels were increased up to 16-fold in the chloroplast membranes alone by the overexpression of NtAQP1 from the plastid genome. Despite the high NtAQP1 levels achieved, transplastomic plants showed lower photosynthetic rates than wild-type plants. This result was associated with lower Rubisco maximum carboxylation rate and ribulose 1,5-bisphosphate regeneration. Transplastomic plants showed reduced mesophyll CO2 conductance but no changes in chloroplast CO2 concentration. The absence of differences in chloroplast CO2 concentration was associated with the lower CO2 fixation activity of the transplastomic plants. These findings suggest that non-functional pores of recombinant NtAQP1 may be produced in the chloroplast inner envelope membrane.


Assuntos
Aquaporinas/metabolismo , Dióxido de Carbono/metabolismo , Nicotiana/fisiologia , Aquaporinas/genética , Transporte Biológico , Cloroplastos/metabolismo , Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética
5.
Plant Biotechnol J ; 11(5): 618-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23398733

RESUMO

Starch, the most abundant storage carbohydrate in plants, has been a major feedstock for first-generation biofuels. Growing fuel demands require, however, that the starch yields of energy crops be improved. Leaf starch is synthesised during the day and degraded at night to power nonphotosynthetic metabolism. Redox regulation has been associated with the coordination of the enzymes involved in starch metabolism, but neither the signals nor mechanisms that regulate this metabolism are entirely clear. In this work, the thioredoxin (Trx) f and m genes, which code for key enzymes in plastid redox regulation, were overexpressed from the plastid genome. Tobacco plants overexpressing Trx f, but not Trx m, showed an increase of up to 700% in leaf starch accumulation, accompanied by an increase in leaf sugars, specific leaf weight (SLW), and leaf biomass yield. To test the potential of these plants as a nonfood energy crop, tobacco leaves overexpressing Trx f were subjected to enzymatic hydrolysis, and around a 500% increase in the release of fermentable sugars was recorded. The results show that Trx f is a more effective regulator of photosynthetic carbon metabolism in planta than Trx m. The overexpression of Trx f might therefore provide a means of increasing the carbohydrate content of plants destined for use in biofuel production. It might also provide a means of improving the nutritional properties of staple food crops.


Assuntos
Tiorredoxinas de Cloroplastos/metabolismo , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Amido/metabolismo , Biocombustíveis , Metabolismo dos Carboidratos/efeitos da radiação , Etanol/metabolismo , Fermentação/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Hidrólise/efeitos da radiação , Luz , Oxirredução/efeitos da radiação , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Plastídeos/efeitos da radiação , Plastídeos/ultraestrutura , Nicotiana/genética , Nicotiana/efeitos da radiação
6.
Antioxidants (Basel) ; 11(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36290702

RESUMO

Post-translational redox modifications provide an important mechanism for the control of major cellular processes. Thioredoxins (Trxs), which are key actors in this regulatory mechanism, are ubiquitous proteins that catalyse thiol-disulfide exchange reactions. In chloroplasts, Trx f, Trx m and NADPH-dependent Trx reductase C (NTRC) have been identified as transmitters of the redox signal by transferring electrons to downstream target enzymes. The number of characterised Trx targets has greatly increased in the last few years, but most of them were determined using in vitro procedures lacking isoform specificity. With this background, we have developed a new in vivo approach based on the overexpression of His-tagged single-cysteine mutants of Trx f, Trx m or NTRC into Nicotiana benthamiana plants. The over-expressed mutated Trxs, capable of forming a stable mixed disulfide bond with target proteins in plants, were immobilised on affinity columns packed with Ni-NTA agarose, and the covalently linked targets were eluted with dithiothreitol and identified by mass spectrometry-based proteomics. The in vivo approach allowed identification of 6, 9 and 42 new potential targets for Trx f, Trx m and NTRC, respectively, and an apparent specificity between NTRC and Trxs was achieved. Functional analysis showed that these targets are involved in several cellular processes.

7.
Plants (Basel) ; 9(2)2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024318

RESUMO

Human cardiotrophin 1 (CT1), a cytokine with excellent therapeutic potential, was previously expressed in tobacco chloroplasts. However, the growth conditions required to reach the highest expression levels resulted in an impairment of its bioactivity. In the present study, we have examined new strategies to modulate the expression of this recombinant protein in chloroplasts so as to enhance its production and bioactivity. In particular, we assessed the effect of both the fusion and co-expression of Trx m with CT1 on the production of a functional CT1 by using plastid transformation. Our data revealed that the Trx m fusion strategy was useful to increase the expression levels of CT1 inside the chloroplasts, although CT1 bioactivity was significantly impaired, and this was likely due to steric hindrance between both proteins. By contrast, the expression of functional CT1 was increased when co-expressed with Trx m, because we demonstrated that recombinant CT1 was functionally active during an in vitro signaling assay. While Trx m/CT1 co-expression did not increase the amount of CT1 in young leaves, our results revealed an increase in CT1 protein stability as the leaves aged in this genotype, which also improved the recombinant protein's overall production. This strategy might be useful to produce other functional biopharmaceuticals in chloroplasts.

8.
Plants (Basel) ; 9(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936732

RESUMO

Increased periods of water shortage and higher temperatures, together with a reduction in nutrient availability, have been proposed as major factors that negatively impact plant development. Photosynthetic CO2 assimilation is the basis of crop production for animal and human food, and for this reason, it has been selected as a primary target for crop phenotyping/breeding studies. Within this context, knowledge of the mechanisms involved in the response and acclimation of photosynthetic CO2 assimilation to multiple changing environmental conditions (including nutrients, water availability, and rising temperature) is a matter of great concern for the understanding of plant behavior under stress conditions, and for the development of new strategies and tools for enhancing plant growth in the future. The current review aims to analyze, from a multi-perspective approach (ranging across breeding, gas exchange, genomics, etc.) the impact of changing environmental conditions on the performance of the photosynthetic apparatus and, consequently, plant growth.

9.
Plants (Basel) ; 8(12)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779140

RESUMO

Thioredoxin (Trx) f and NADPH-dependent Trx reductase C (NTRC) have both been proposed as major redox regulators of starch metabolism in chloroplasts. However, little is known regarding the specific role of each protein in this complex mechanism. To shed light on this point, tobacco plants that were genetically engineered to overexpress the NTRC protein from the chloroplast genome were obtained and compared to previously generated Trx f-overexpressing transplastomic plants. Likewise, we investigated the impact of NTRC and Trx f deficiency on starch metabolism by generating Nicotiana benthamiana plants that were silenced for each gene. Our results demonstrated that NTRC overexpression induced enhanced starch accumulation in tobacco leaves, as occurred with Trx f. However, only Trx f silencing leads to a significant decrease in the leaf starch content. Quantitative analysis of enzyme activities related to starch synthesis and degradation were determined in all of the genotypes. Zymographic analyses were additionally performed to compare the amylolytic enzyme profiles of both transplastomic tobacco plants. Our findings indicated that NTRC overexpression promotes the accumulation of transitory leaf starch as a consequence of a diminished starch turnover during the dark period, which seems to be related to a significant reductive activation of ADP-glucose pyrophosphorylase and/or a deactivation of a putative debranching enzyme. On the other hand, increased starch content in Trx f-overexpressing plants was connected to an increase in the capacity of soluble starch synthases during the light period. Taken together, these results suggest that NTRC and the ferredoxin/Trx system play distinct roles in starch turnover.

10.
Biotechnol J ; 10(11): 1803-13, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26121393

RESUMO

Plastid genetic engineering represents an attractive system for the production of foreign proteins in plants. Although high expression levels can be achieved in leaf chloroplasts, the results for non-photosynthetic plastids are generally discouraging. Here, we report the expression of two thioredoxin genes (trx f and trx m) from the potato plastid genome to study transgene expression in amyloplasts. As expected, the highest transgene expression was detected in the leaf (up to 4.2% of TSP). The Trx protein content in the tuber was approximately two to three orders of magnitude lower than in the leaf. However, we demonstrate that a simple post-harvest light treatment of microtubers developed in vitro or soil-grown tubers induces up to 55 times higher accumulation of the recombinant protein in just seven to ten days. After the applied treatment, the Trx f levels in microtubers and soil-grown tubers increased to 0.14% and 0.11% of TSP, respectively. Moreover, tubers stored for eight months maintained the capacity of increasing the foreign protein levels after the light treatment. Post-harvest cold induction (up to five times) at 4°C was also detected in microtubers. We conclude that plastid transformation and post-harvest light treatment could be an interesting approach for the production of foreign proteins in potato.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos da radiação , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/metabolismo , Proteínas Recombinantes/metabolismo , Solanum tuberosum/metabolismo , Plantas Geneticamente Modificadas/genética , Plastídeos/genética , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Solanum tuberosum/genética , Tiorredoxinas/análise , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa