Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Emerg Infect Dis ; 30(11): 2362-2369, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39447183

RESUMO

In Kenya, influenza virus circulates year-round, raising questions about optimum strategies for vaccination. Given national interest in introducing influenza vaccination for young children 6-23 months of age, we modeled total influenza-associated illnesses (inclusive of hospitalizations, outpatient illnesses, and non‒medically attended illnesses) averted by multiple potential vaccination strategies: year-round versus seasonal-campaign vaccination, and vaccination starting in April (Southern Hemisphere influenza vaccine availability) versus October (Northern Hemisphere availability). We modeled average vaccine effectiveness of 50% and annual vaccination coverage of 60%. In the introduction year, year-round vaccination averted 6,410 total illnesses when introduced in October and 7,202 illnesses when introduced in April, whereas seasonal-campaign vaccination averted 10,236 (October) to 11,612 (April) illnesses. In the year after introduction, both strategies averted comparable numbers of illnesses (10,831-10,868 for year-round, 10,175-11,282 for campaign). Campaign-style vaccination would likely have a greater effect during initial pediatric influenza vaccine introduction in Kenya; however, either strategy could achieve similar longer-term effects.


Assuntos
Programas de Imunização , Vacinas contra Influenza , Influenza Humana , Estações do Ano , Vacinação , Humanos , Quênia/epidemiologia , Influenza Humana/prevenção & controle , Influenza Humana/epidemiologia , Vacinas contra Influenza/administração & dosagem , Lactente , Vacinação/estatística & dados numéricos , Feminino , Pré-Escolar , Masculino
2.
Clin Infect Dis ; 76(4): 704-712, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35767269

RESUMO

BACKGROUND: Assessing the infectious reservoir is critical in malaria control and elimination strategies. We conducted a longitudinal epidemiological study in a high-malaria-burden region in Kenya to characterize transmission in an asymptomatic population. METHODS: 488 study participants encompassing all ages in 120 households within 30 clusters were followed for 1 year with monthly sampling. Malaria was diagnosed by microscopy and molecular methods. Transmission potential in gametocytemic participants was assessed using direct skin and/or membrane mosquito feeding assays, then treated with artemether-lumefantrine. Study variables were assessed using mixed-effects generalized linear models. RESULTS: Asexual and sexual parasite data were collected from 3792 participant visits, with 903 linked with feeding assays. Univariate analysis revealed that the 6-11-year-old age group was at higher risk of harboring asexual and sexual infections than those <6 years old (odds ratio [OR] 1.68, P < .001; and OR 1.81, P < .001), respectively. Participants with submicroscopic parasitemia were at a lower risk of gametocytemia compared with microscopic parasitemia (OR 0.04, P < .001), but they transmitted at a significantly higher rate (OR 2.00, P = .002). A large proportion of the study population who were infected at least once remained infected (despite treatment) with asexual (71.7%, 291/406) or sexual (37.4%, 152/406) parasites. 88.6% (365/412) of feeding assays conducted in individuals who failed treatment the previous month resulted in transmissions. CONCLUSIONS: Individuals with asymptomatic infection sustain the transmission cycle, with the 6-11-year age group serving as an important reservoir. The high rates of artemether-lumefantrine treatment failures suggest surveillance programs using molecular methods need to be expanded for accurate monitoring and evaluation of treatment outcomes.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Animais , Humanos , Criança , Antimaláricos/uso terapêutico , Malária Falciparum/epidemiologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Plasmodium falciparum , Quênia/epidemiologia , Parasitemia/tratamento farmacológico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária/tratamento farmacológico
3.
Malar J ; 22(1): 161, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37208735

RESUMO

BACKGROUND: The unmet demand for effective malaria transmission-blocking agents targeting the transmissible stages of Plasmodium necessitates intensive discovery efforts. In this study, a bioactive bisbenzylisoquinoline (BBIQ), isoliensinine, from Cissampelos pariera (Menispermaceae) rhizomes was identified and characterized for its anti-malarial activity. METHODS: Malaria SYBR Green I fluorescence assay was performed to evaluate the in vitro antimalarial activity against D6, Dd2, and F32-ART5 clones, and immediate ex vivo (IEV) susceptibility for 10 freshly collected P. falciparum isolates. To determine the speed- and stage-of-action of isoliensinine, an IC50 speed assay and morphological analyses were performed using synchronized Dd2 asexuals. Gametocytocidal activity against two culture-adapted gametocyte-producing clinical isolates was determined using microscopy readouts, with possible molecular targets and their binding affinities deduced in silico. RESULTS: Isoliensinine displayed a potent in vitro gametocytocidal activity at mean IC50gam values ranging between 0.41 and 0.69 µM for Plasmodium falciparum clinical isolates. The BBIQ compound also inhibited asexual replication at mean IC50Asexual of 2.17 µM, 2.22 µM, and 2.39 µM for D6, Dd2 and F32-ART5 respectively, targeting the late-trophozoite to schizont transition. Further characterization demonstrated a considerable immediate ex vivo potency against human clinical isolates at a geometric mean IC50IEV = 1.433 µM (95% CI 0.917-2.242). In silico analyses postulated a probable anti-malarial mechanism of action by high binding affinities for four mitotic division protein kinases; Pfnek1, Pfmap2, Pfclk1, and Pfclk4. Additionally, isoliensinine was predicted to possess an optimal pharmacokinetics profile and drug-likeness properties. CONCLUSION: These findings highlight considerable grounds for further exploration of isoliensinine as an amenable scaffold for malaria transmission-blocking chemistry and target validation.


Assuntos
Antimaláricos , Cissampelos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Plasmodium falciparum , Rizoma
4.
Reprod Health ; 20(1): 111, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501066

RESUMO

Differing global sociocultural contexts of sexual relationships influence age at first sexual intercourse with potentially long-lasting region-specific effects such as increased risk of contracting HIV and other sexually transmitted infections (STIs). In these cross-sectional analyses of data from the screening and enrollment visits for an HIV incidence study in Kisumu County, Kenya, we evaluated factors associated with having experienced an early sexual debut (ESD) among males and females aged 18-35 years. Clinical evaluation was performed and sexual behaviors were assessed via questionnaire. ESD was defined as self-reported age 15 years or younger at first sexual intercourse. Robust Poisson regression was used to estimate prevalence ratios (PRs) and 95% confidence intervals (95% CIs) for factors associated with ESD. Of 1057 participants, 542 (51.3%) were female. Participants' median age at study screening was 25 years (interquartile range [IQR]: 22-29), and at sexual debut was 16 years (IQR: 14-17). Five hundred and four participants (47.7%) reported ESD. ESD was less common among females (PR 0.78, CI 0.67-0.90) and participants with more than primary education (PR 0.56, CI 0.47-0.66). ESD was more common in participants with a history of drug use (PR 1.28, CI 1.10-1.49). Drug use removed the protective effect of education (some secondary education or less, no drug use: PR 0.72, CI 0.61-0.85; some secondary education or less, drug use: PR 0.94, CI 0.74-1.18). ESD was common in our study and associated with lower educational attainment and increased likelihood of drug use. Interventions are needed early in life, well before 15 years of age, to encourage engagement in schooling and prevent drug use. Comprehensive sexual education and interventions to prevent drug use may be beneficial before the age of 15 years.


Early sexual debut can be defined as first sexual intercourse at or before 15 years of age. There are many social and cultural factors that influence the age of sexual debut. People who start having sex early in life may exhibit behaviors that increase risk for HIV and other sexually transmitted infections. We conducted a study of men and women aged 18­35 years in Kisumu County, Kenya, which included documentation of medical history, physical examination, laboratory tests, and a questionnaire to assess sexual behaviors. Among the 1057 people studied, the average age of sexual debut was 16.0 years for females and 15.4 years for males. A total of 504 (47.7%) participants reported early sexual debut. The data showed that early sexual debut was less common in females and in participants with more years of education. Early sexual debut was more common in participants with a history of drug use. The findings suggest that interventions to prevent early sexual debut might be improved if they focus on educational attainment and prevention of drug use.


Assuntos
Infecções por HIV , Comportamento Sexual , Masculino , Humanos , Feminino , Adulto , Quênia/epidemiologia , Estudos Transversais , Escolaridade , Infecções por HIV/epidemiologia
5.
BMC Med ; 20(1): 448, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36397090

RESUMO

BACKGROUND: Dihydroartemisinin-piperaquine (DHA-PPQ) is an alternative first-line antimalarial to artemether-lumefantrine in Kenya. However, recent reports on the emergence of PPQ resistance in Southeast Asia threaten its continued use in Kenya and Africa. In line with the policy on continued deployment of DHA-PPQ, it is imperative to monitor the susceptibility of Kenyan parasites to PPQ and other antimalarials. METHODS: Parasite isolates collected between 2008 and 2021 from individuals with naturally acquired P. falciparum infections presenting with uncomplicated malaria were tested for in vitro susceptibility to piperaquine, dihydroartemisinin, lumefantrine, artemether, and chloroquine using the malaria SYBR Green I method. A subset of the 2019-2021 samples was further tested for ex vivo susceptibility to PPQ using piperaquine survival assay (PSA). Each isolate was also characterized for mutations associated with antimalarial resistance in Pfcrt, Pfmdr1, Pfpm2/3, Pfdhfr, and Pfdhps genes using real-time PCR and Agena MassARRAY platform. Associations between phenotype and genotype were also determined. RESULTS: The PPQ median IC50 interquartile range (IQR) remained stable during the study period, 32.70 nM (IQR 20.2-45.6) in 2008 and 27.30 nM (IQR 6.9-52.8) in 2021 (P=0.1615). The median ex vivo piperaquine survival rate (IQR) was 0% (0-5.27) at 95% CI. Five isolates had a PSA survival rate of ≥10%, consistent with the range of PPQ-resistant parasites, though they lacked polymorphisms in Pfmdr1 and Plasmepsin genes. Lumefantrine and artemether median IC50s rose significantly to 62.40 nM (IQR 26.9-100.8) (P = 0.0201); 7.00 nM (IQR 2.4-13.4) (P = 0.0021) in 2021 from 26.30 nM (IQR 5.1-64.3); and 2.70 nM (IQR 1.3-10.4) in 2008, respectively. Conversely, chloroquine median IC50s decreased significantly to 10.30 nM (IQR 7.2-20.9) in 2021 from 15.30 nM (IQR 7.6-30.4) in 2008, coinciding with a decline in the prevalence of Pfcrt 76T allele over time (P = 0.0357). The proportions of piperaquine-resistant markers including Pfpm2/3 and Pfmdr1 did not vary significantly. A significant association was observed between PPQ IC50 and Pfcrt K76T allele (P=0.0026). CONCLUSIONS: Circulating Kenyan parasites have remained sensitive to PPQ and other antimalarials, though the response to artemether (ART) and lumefantrine (LM) is declining. This study forms a baseline for continued surveillance of current antimalarials for timely detection of resistance.


Assuntos
Antimaláricos , Artemisininas , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum/genética , Quênia/epidemiologia , Proteínas de Protozoários/genética , Combinação Arteméter e Lumefantrina , Artemeter , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Lumefantrina , Genômica
6.
Malar J ; 21(1): 251, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050680

RESUMO

BACKGROUND: The ABO blood groups consist of A, B, and H carbohydrate antigens, which regulate protein activities during malaria infection in humans. Understanding the interplay between the malaria parasite and blood group antigens is essential in understanding new interventions to reduce the global burden of malaria. This study assessed the burden of malaria infection among individuals with varying blood groups seeking treatment at selected hospitals in Kenya. METHODS: A total of 366 samples from an ongoing malaria surveillance study were diagnosed for malaria by microscopy and further typed for blood group using ABO blood grouping. Age and sex were recorded in a data sheet, and analysed using R software version 4. Groups' proportions (blood group, malaria infection, age and sex) were compared using Pearson's Chi-square and Fischer exact tests. Wilcoxon and Kruskal-Wallis tests were performed and P-value < 0.05 was considered significant after Bonferroni correction for multiple comparisons. To understand the effect of each blood group on parasitaemia, multivariate logistic regression was used to model ABO blood group in relation to parasitaemia. RESULTS: Of the 366 samples analysed, 312 were malaria positive, mean age was 9.83 years (< 5 years n = 152 (48.41%), 6 to 17 years n = 101 (32.16%) and > 18 years n = 61 (19.43%)). Malaria prevalence was higher among females than males, 54.46% and 45.54%, respectively. Kisumu enrolled the highest number 109 (35%)) of malaria cases, Kombewa 108 (35%), Malindi 32 (10%), Kisii 28 (9%), Marigat 23 (7%), and Kericho 12 (4%). Blood group O+ was the most prevalent among the enrolled individuals (46.50%), A+ (27.71%), B+ (21.02%) and AB+ (4.78%) respectively. Compared to blood group O+, blood group B+ individuals were (14%) were more likely to habour Plasmodium falciparum infection as opposed to A+ and AB+ individuals, that were 7% and 20%, respectively,. Those living in malaria-endemic zones presented with higher parasite densities compared to those living in malaria-epidemic (p = 0.0061). Individuals bearing B + blood group are more likely to habour high parasitaemia compared to O + blood group bearers (OR = 4.47, CI = 1.53-13.05, p = 0.006). CONCLUSION: Individuals of blood group B harbour high parasitaemia compared with the blood group O, Additionally, blood group A and B present with symptoms at lower parasitaemia than blood group O. Regardles of malaria transmission zones, individuals from endemic zones showed up with high parasitaemia and among them were more individuals of blood groups A and B than individuals of blood group O. Implying that these individuals were more at risk and require additional attention and effective case management.


Assuntos
Antígenos de Grupos Sanguíneos , Malária Falciparum , Malária , Criança , Feminino , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Malária Falciparum/parasitologia , Masculino , Parasitemia/epidemiologia , Plasmodium falciparum
7.
BMC Infect Dis ; 21(1): 937, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503469

RESUMO

BACKGROUND: Malaria and schistosomiasis present considerable disease burden in tropical and sub-tropical areas and severity is worsened by co-infections in areas where both diseases are endemic. Although pathogenesis of these infections separately is well studied, there is limited information on the pathogenic disease mechanisms and clinical disease outcomes in co-infections. In this study, we investigated the prevalence of malaria and schistosomiasis co-infections, and the hematologic and blood chemistry abnormalities in asymptomatic adults in a rural fishing community in western Kenya. METHODS: This sub-study used samples and data collected at enrollment from a prospective observational cohort study (RV393) conducted in Kisumu County, Kenya. The presence of malaria parasites was determined using microscopy and real-time-PCR, and schistosomiasis infection by urine antigen analysis (CCA). Hematological analysis and blood chemistries were performed using standard methods. Statistical analyses were performed to compare demographic and infection data distribution, and hematologic and blood chemistry parameters based on different groups of infection categories. Clinically relevant hematologic conditions were analyzed using general linear and multivariable Poisson regression models. RESULTS: From February 2017 to May 2018, we enrolled 671 participants. The prevalence of asymptomatic Plasmodium falciparum was 28.2% (157/556) and schistosomiasis 41.2% (229/562), with 18.0% (100/556) of participants co-infected. When we analyzed hematological parameters using Wilcoxon rank sum test to evaluate median (IQR) distribution based on malarial parasites and/or schistosomiasis infection status, there were significant differences in platelet counts (p = 0.0002), percent neutrophils, monocytes, eosinophils, and basophils (p < 0.0001 each). Amongst clinically relevant hematological abnormalities, eosinophilia was the most prevalent at 20.6% (116/562), whereas thrombocytopenia was the least prevalent at 4.3% (24/562). In univariate model, Chi-Square test performed for independence between participant distribution in different malaria parasitemia/schistosomiasis infection categories within each clinical hematological condition revealed significant differences for thrombocytopenia and eosinophilia (p = 0.006 and p < 0.0001, respectively), which was confirmed in multivariable models. Analysis of the pairwise mean differences of liver enzyme (ALT) and kidney function (Creatinine Clearance) indicated the presence of significant differences in ALT across the infection groups (parasite + /CCA + vs all other groups p < .003), but no differences in mean Creatinine Clearance across the infection groups. CONCLUSIONS: Our study demonstrates the high burden of asymptomatic malaria parasitemia and schistosomiasis infection in this rural population in Western Kenya. Asymptomatic infection with malaria or schistosomiasis was associated with laboratory abnormalities including neutropenia, leukopenia and thrombocytopenia. These abnormalities could be erroneously attributed to other diseases processes during evaluation of diseases processes. Therefore, evaluating for co-infections is key when assessing individuals with laboratory abnormalities. Additionally, asymptomatic infection needs to be considered in control and elimination programs given high prevalence documented here.


Assuntos
Coinfecção , Malária Falciparum , Malária , Esquistossomose , Adulto , Infecções Assintomáticas/epidemiologia , Coinfecção/epidemiologia , Estudos Transversais , Humanos , Quênia/epidemiologia , Malária/complicações , Malária/epidemiologia , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Plasmodium falciparum , Prevalência , Estudos Prospectivos , População Rural , Esquistossomose/complicações , Esquistossomose/epidemiologia
8.
Malar J ; 19(1): 168, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349765

RESUMO

BACKGROUND: Naturally acquired immunity (NAI), which is characterized by protection against overt clinical disease and high parasitaemia, is acquired with age and transmission intensity. The role of NAI on the efficacy of anti-malarial drugs, including artemisinin-based combinations used as the first-line treatment for uncomplicated Plasmodium falciparum, has not been fully demonstrated. This study investigated the role of NAI in response to artemisinin-based combination therapy (ACT), in symptomatic patients living in western Kenya, a high malaria transmission area. METHODS: Sera samples from malaria immune participants (n = 105) in a therapeutic efficacy study were assessed for in vitro growth inhibitory activity against the 3D7 strain of P. falciparum using a fluorescent-based growth inhibition assay (GIA). Participants' age and parasite clearance parameters were used in the analysis. Pooled sera from malaria naïve participants (n = 6) with no Plasmodium infection from malaria non-endemic regions of Kenya was used as negative control. RESULTS: The key observations of the study were as follows: (1) Sera with intact complement displayed higher GIA activity at lower (1%) serum dilutions (p < 0.0001); (2) there was significant relationship between GIA activity, parasite clearance rate (p = 0.05) and slope half-life (p = 0.025); and (3) age was a confounding factor when comparing the GIA activity with parasite clearance kinetics. CONCLUSION: This study demonstrates for the first time there is synergy of complement, pre-existing immunity, and drug treatment in younger patients with symptomatic malaria in a high-transmission area.


Assuntos
Imunidade Adaptativa , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Ativação do Complemento , Malária Falciparum/imunologia , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Adulto , Criança , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Lactente , Recém-Nascido , Quênia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
BMC Infect Dis ; 20(1): 703, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977759

RESUMO

BACKGROUND: Treatment of gonorrhea is complicated by the development of antimicrobial resistance in Neisseria gonorrhoeae (GC) to the antibiotics recommended for treatment. Knowledge on types of plasmids and the antibiotic resistance genes they harbor is useful in monitoring the emergence and spread of bacterial antibiotic resistance. In Kenya, studies on gonococcal antimicrobial resistance are few and data on plasmid mediated drug resistance is limited. The present study characterizes plasmid mediated resistance in N. gonorrhoeae isolates recovered from Kenya between 2013 and 2018. METHODS: DNA was extracted from 36 sub-cultured GC isolates exhibiting varying drug resistance profiles. Whole genome sequencing was done on Illumina MiSeq platform and reads assembled de-novo using CLC Genomics Workbench. Genome annotation was performed using Rapid Annotation Subsystem Technology. Comparisons in identified antimicrobial resistance determinants were done using Bioedit sequence alignment editor. RESULTS: Twenty-four (66.7%) isolates had both ß-lactamase (TEM) and TetM encoding plasmids. 8.3% of the isolates lacked both TEM and TetM plasmids and had intermediate to susceptible penicillin and tetracycline MICs. Twenty-six (72%) isolates harbored TEM encoding plasmids. 25 of the TEM plasmids were of African type while one was an Asian type. Of the 36 isolates, 31 (86.1%) had TetM encoding plasmids, 30 of which harbored American TetM, whereas 1 carried a Dutch TetM. All analyzed isolates had non-mosaic penA alleles. All the isolates expressing TetM were tetracycline resistant (MIC> 1 mg/L) and had increased doxycycline MICs (up to 96 mg/L). All the isolates had S10 ribosomal protein V57M amino acid substitution associated with tetracycline resistance. No relation was observed between PenB and MtrR alterations and penicillin and tetracycline MICs. CONCLUSION: High-level gonococcal penicillin and tetracycline resistance in the sampled Kenyan regions was found to be mediated by plasmid borne blaTEM and tetM genes. While the African TEM plasmid, TEM1 and American TetM are the dominant genotypes, Asian TEM plasmid, a new TEM239 and Dutch TetM have emerged in the regions.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Gonorreia/tratamento farmacológico , Gonorreia/epidemiologia , Neisseria gonorrhoeae/genética , Penicilinas/uso terapêutico , Plasmídeos/genética , Resistência a Tetraciclina/genética , Tetraciclina/uso terapêutico , DNA Bacteriano/genética , Feminino , Genótipo , Gonorreia/microbiologia , Humanos , Quênia/epidemiologia , Masculino , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/isolamento & purificação , Sequenciamento Completo do Genoma , beta-Lactamases/genética
10.
J Infect Dis ; 219(12): 1969-1979, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30649381

RESUMO

BACKGROUND: The impact of preexisting immunity on the efficacy of artemisinin combination therapy must be examined to monitor resistance, and for implementation of new treatment strategies. METHODS: Serum samples obtained from a clinical trial in Western Kenya randomized to receive artemether-lumefantrine (AL) or artesunate-mefloquine (ASMQ) were screened for total immunoglobulin G against preerythrocytic and erythrocytic antigens. The association and correlation between different variables, and impact of preexisting immunity on parasite slope half-life (t½) was determined. RESULTS: There was no significant difference in t½, but the number of individuals with lag phase was significantly higher in the AL than in the ASMQ arm (29 vs 13, respectively; P < .01). Circumsporozoite protein-specific antibodies correlate positively with t½ (AL, P = .03; ASMQ, P = .09), but negatively with clearance rate in both study arms (AL, P = .16; ASMQ, P = .02). The t½ correlated negatively with age in ASMQ group. When stratified based on t½, the antibody titers against circumsporozoite protein and merozoite surface protein 1 were significantly higher in participants who cleared parasites rapidly in the AL group (P = .01 and P = .02, respectively). CONCLUSION: Data presented here define immunoprofiles associated with distinct responses to 2 different antimalarial drugs, revealing impact of preexisting immunity on the efficacy of artemisinin combination therapy regimens in a malaria-holoendemic area. CLINICAL TRIALS REGISTRATION: NCT01976780.


Assuntos
Anticorpos Antiprotozoários/sangue , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Quênia , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/imunologia , Masculino , Mefloquina/uso terapêutico , Carga Parasitária
11.
BMC Microbiol ; 19(1): 76, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961546

RESUMO

BACKGROUND: Phenotypic fluoroquinolone resistance was first reported in Western Kenya in 2009 and later in Coastal Kenya and Nairobi. Until recently gonococcal fluoroquinolone resistance mechanisms in Kenya had not been elucidated. The aim of this paper is to analyze mutations in both gyrA and parC responsible for elevated fluoroquinolone Minimum Inhibitory Concentrations (MICs) in Neisseria gonorrhoeae (GC) isolated from heterosexual individuals from different locations in Kenya between 2013 and 2017. METHODS: Antimicrobial Susceptibility Tests were done on 84 GC in an ongoing Sexually Transmitted Infections (STI) surveillance program. Of the 84 isolates, 22 resistant to two or more classes of antimicrobials were chosen for analysis. Antimicrobial susceptibility tests were done using E-test (BioMerieux) and the results were interpreted with reference to European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards. The isolates were sub-cultured, and whole genomes were sequenced using Illumina platform. Reads were assembled de novo using Velvet, and mutations in the GC Quinolone Resistant Determining Regions identified using Bioedit sequence alignment editor. Single Nucleotide Polymorphism based phylogeny was inferred using RaxML. RESULTS: Double GyrA amino acid substitutions; S91F and D95G/D95A were identified in 20 isolates. Of these 20 isolates, 14 had an additional E91G ParC substitution and significantly higher ciprofloxacin MICs (p = 0.0044*). On the contrary, norfloxacin MICs of isolates expressing both GyrA and ParC QRDR amino acid changes were not significantly high (p = 0.82) compared to MICs of isolates expressing GyrA substitutions alone. No single GyrA substitution was found in the analyzed isolates, and no isolate contained a ParC substitution without the simultaneous presence of double GyrA substitutions. Maximum likelihood tree clustered the 22 isolates into 6 distinct clades. CONCLUSION: Simultaneous presence of amino acid substitutions in ParC and GyrA has been reported to increase gonococcal fluoroquinolone resistance from different regions in the world. Our findings indicate that GyrA S91F, D95G/D95A and ParC E91G amino acid substitutions mediate high fluoroquinolone resistance in the analyzed Kenyan GC.


Assuntos
Antibacterianos/farmacologia , DNA Girase/genética , DNA Topoisomerase IV/genética , Fluoroquinolonas/farmacologia , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/genética , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Monitoramento Epidemiológico , Feminino , Gonorreia/microbiologia , Humanos , Quênia , Masculino , Testes de Sensibilidade Microbiana , Mutação , Estudos Retrospectivos
13.
Malar J ; 17(1): 398, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376843

RESUMO

BACKGROUND: There are concerns that resistance to artemisinin-based combination therapy might emerge in Kenya and sub-Saharan Africa (SSA) in the same pattern as was with chloroquine and sulfadoxine-pyrimethamine. Single nucleotide polymorphisms (SNPs) in critical alleles of pfmdr1 gene have been associated with resistance to artemisinin and its partner drugs. Microsatellite analysis of loci flanking genes associated with anti-malarial drug resistance has been used in defining the geographic origins, dissemination of resistant parasites and identifying regions in the genome that have been under selection. METHODS: This study set out to investigate evidence of selective sweep and genetic lineages in pfmdr1 genotypes associated with the use of artemether-lumefantrine (AL), as the first-line treatment in Kenya. Parasites (n = 252) from different regions in Kenya were assayed for SNPs at codons 86, 184 and 1246 and typed for 7 neutral microsatellites and 13 microsatellites loci flanking (± 99 kb) pfmdr1 in Plasmodium falciparum infections. RESULTS: The data showed differential site and region specific prevalence of SNPs associated with drug resistance in the pfmdr1 gene. The prevalence of pfmdr1 N86, 184F, and D1246 in western Kenya (Kisumu, Kericho and Kisii) compared to the coast of Kenya (Malindi) was 92.9% vs. 66.7%, 53.5% vs. to 24.2% and 96% vs. to 87.9%, respectively. The NFD haplotype which is consistent with AL selection was at 51% in western Kenya compared to 25% in coastal Kenya. CONCLUSION: Selection pressures were observed to be different in different regions of Kenya, especially the western region compared to the coastal region. The data showed independent genetic lineages for all the pfmdr1 alleles. The evidence of soft sweeps in pfmdr1 observed varied in direction from one region to another. This is challenging for malaria control programs in SSA which clearly indicate effective malaria control policies should be based on the region and not at a country wide level.


Assuntos
Antimaláricos/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Resistência a Medicamentos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Seleção Genética , Quênia , Malária Falciparum/transmissão , Plasmodium falciparum/efeitos dos fármacos
14.
J Infect Dis ; 211(8): 1352-5, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25367300

RESUMO

Mutations in the Plasmodium falciparum K13-propeller domain have recently been shown to be important determinants of artemisinin resistance in Southeast Asia. This study investigated the prevalence of K13-propeller polymorphisms across sub-Saharan Africa. A total of 1212 P. falciparum samples collected from 12 countries were sequenced. None of the K13-propeller mutations previously reported in Southeast Asia were found, but 22 unique mutations were detected, of which 7 were nonsynonymous. Allele frequencies ranged between 1% and 3%. Three mutations were observed in >1 country, and the A578S was present in parasites from 5 countries. This study provides the baseline prevalence of K13-propeller mutations in sub-Saharan Africa.


Assuntos
Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Antimaláricos/farmacologia , Artemisininas/farmacologia , Sudeste Asiático , Resistência a Medicamentos/genética , Frequência do Gene , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mutação/genética , Plasmodium falciparum/efeitos dos fármacos
15.
Antimicrob Agents Chemother ; 58(7): 3737-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24752268

RESUMO

In combination with antibiotics, quinine is recommended as the second-line treatment for uncomplicated malaria, an alternative first-line treatment for severe malaria, and for treatment of malaria in the first trimester of pregnancy. Quinine has been shown to have frequent clinical failures, and yet the mechanisms of action and resistance have not been fully elucidated. However, resistance is linked to polymorphisms in multiple genes, including multidrug resistance 1 (Pfmdr1), the chloroquine resistance transporter (Pfcrt), and the sodium/hydrogen exchanger gene (Pfnhe1). Here, we investigated the association between in vitro quinine susceptibility and genetic polymorphisms in Pfmdr1codons 86 and 184, Pfcrt codon 76, and Pfnhe1 ms4760 in 88 field isolates from western Kenya. In vitro activity was assessed based on the drug concentration that inhibited 50% of parasite growth (the IC50), and parasite genetic polymorphisms were determined from DNA sequencing. Data revealed there were significant associations between polymorphism in Pfmdr1-86Y, Pfmdr1-184F, or Pfcrt-76T and quinine susceptibility (P < 0.0001 for all three associations). Eighty-two percent of parasites resistant to quinine carried mutant alleles at these codons (Pfmdr1-86Y, Pfmdr1-184F, and Pfcrt-76T), whereas 74% of parasites susceptible to quinine carried the wild-type allele (Pfmdr1-N86, Pfmdr1-Y184, and Pfcrt-K76, respectively). In addition, quinine IC50 values for parasites with Pfnhe1 ms4760 3 DNNND repeats were significantly higher than for those with 1 or 2 repeats (P = 0.033 and P = 0.0043, respectively). Clinical efficacy studies are now required to confirm the validity of these markers and the importance of parasite genetic background.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Genes de Protozoários/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Quinina/farmacologia , Trocadores de Sódio-Hidrogênio/genética , Alelos , Animais , DNA de Protozoário/genética , Genes de Protozoários/fisiologia , Genótipo , Humanos , Quênia , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/fisiologia , Repetições de Microssatélites , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Testes de Sensibilidade Parasitária , Polimorfismo Genético/genética , Proteínas de Protozoários/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia
16.
Malar J ; 13: 265, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25007860

RESUMO

BACKGROUND: The effects that artemether-lumefantrine (AL) has on gametocyte dynamics in the short-term have recently been described. However there is limited long-term longitudinal data on the effect of AL on gametocyte dynamics in asymptomatic children. METHODS: An epidemiological study was conducted in Kombewa, Western Kenya, in which 270 asymptomatic children aged between 12 and 47 months were enrolled. The subjects were randomized to receive either a course of AL or placebo at enrolment. Active follow-up was conducted for one year. RESULTS: The gametocyte prevalence and density dynamics throughout the study period mirrored that of the asexual forms. The proportion of initially parasitaemic subjects becoming gametocytaemic was significantly lower in the AL arm for the first 12 weeks following randomization. The geometric mean gametocyte density was lower in the AL arm for 2 weeks following randomization. None of the variables of interest had a statistically significant effect on the duration of gametocytaemia. There is no effect seen in subjects who are not parasitaemic at the time of drug administration. CONCLUSIONS: The treatment of asymptomatic parasitaemic subjects with AL results in a significant reduction in the proportion of subjects who become gametocytaemic for at least 12 weeks.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Portador Sadio/tratamento farmacológico , Portador Sadio/epidemiologia , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum/isolamento & purificação , Combinação Arteméter e Lumefantrina , Portador Sadio/parasitologia , Pré-Escolar , Estudos de Coortes , Combinação de Medicamentos , Estudos Epidemiológicos , Feminino , Humanos , Lactente , Quênia/epidemiologia , Estudos Longitudinais , Malária Falciparum/parasitologia , Masculino , Parasitemia/diagnóstico , Placebos/uso terapêutico
17.
Malar J ; 13: 250, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24989984

RESUMO

BACKGROUND: Sulphadoxine-pyrimethamine (SP), an antifolate, was replaced by artemether-lumefantrine as the first-line malaria drug treatment in Kenya in 2004 due to the wide spread of resistance. However, SP still remains the recommended drug for intermittent preventive treatment in pregnant women and infants (IPTP/I) owing to its safety profile. This study assessed the prevalence of mutations in dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes associated with SP resistance in samples collected in Kenya between 2008 and 2012. METHODS: Field isolates collected from Kisumu, Kisii, Kericho and Malindi district hospitals were assessed for genetic polymorphism at various loci within Pfdhfr and Pfdhps genes by sequencing. RESULTS: Among the Pfdhfr mutations, codons N51I, C59R, S108N showed highest prevalence in all the field sites at 95.5%, 84.1% and 98.6% respectively. Pfdhfr S108N prevalence was highest in Kisii at 100%. A temporal trend analysis showed steady prevalence of mutations over time except for codon Pfdhps 581 which showed an increase in mixed genotypes. Triple Pfdhfr N51I/C59R/S108N and double Pfdhps A437G/ K540E had high prevalence rates of 86.6% and 87.9% respectively. The Pfdhfr/Pfdhps quintuple, N51I/C59R/S108N/A437G/K540E mutant which has been shown to be the most clinically relevant marker for SP resistance was observed in 75.7% of the samples. CONCLUSION: SP resistance is still persistently high in western Kenya, which is likely due to fixation of key mutations in the Pfdhfr and Pfdhps genes as well as drug pressure from other antifolate drugs being used for the treatment of malaria and other infections. In addition, there is emergence and increasing prevalence of new mutations in Kenyan parasite population. Since SP is used for IPTP/I, molecular surveillance and in vitro susceptibility assays must be sustained to provide information on the emergence and spread of SP resistance.


Assuntos
Antimaláricos/farmacologia , Di-Hidropteroato Sintase/genética , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Tetra-Hidrofolato Desidrogenase/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Quênia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Polimorfismo Genético , Gravidez , Análise de Sequência de DNA , Adulto Jovem
18.
J Cheminform ; 16(1): 63, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831351

RESUMO

Drug discovery is an intricate and costly process. Repurposing existing drugs and active compounds offers a viable pathway to develop new therapies for various diseases. By leveraging publicly available biomedical information, it is possible to predict compounds' activity and identify their potential targets across diverse organisms. In this study, we aimed to assess the antiplasmodial activity of compounds from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library using in vitro and bioinformatics approaches. We assessed the in vitro antiplasmodial activity of the compounds using blood-stage and liver-stage drug susceptibility assays. We used protein sequences of known targets of the ReFRAME compounds with high antiplasmodial activity (EC50 < 10 uM) to conduct a protein-pairwise search to identify similar Plasmodium falciparum 3D7 proteins (from PlasmoDB) using NCBI protein BLAST. We further assessed the association between the compounds' in vitro antiplasmodial activity and level of similarity between their known and predicted P. falciparum target proteins using simple linear regression analyses. BLAST analyses revealed 735 P. falciparum proteins that were similar to the 226 known protein targets associated with the ReFRAME compounds. Antiplasmodial activity of the compounds was positively associated with the degree of similarity between the compounds' known targets and predicted P. falciparum protein targets (percentage identity, E value, and bit score), the number of the predicted P. falciparum targets, and their respective mutagenesis index and fitness scores (R2 between 0.066 and 0.92, P < 0.05). Compounds predicted to target essential P. falciparum proteins or those with a druggability index of 1 showed the highest antiplasmodial activity.

19.
Biochem Biophys Rep ; 37: 101596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146350

RESUMO

The molecular mechanism underlying Plasmodium falciparum's persistence in the asymptomatic phase of infection remains largely unknown. However, large-scale shifts in the parasites' gene expression during asymptomatic infections may enhance phenotypic plasticity, maximizing their fitness and leading to the persistence of the asymptomatic infections. To uncover these mechanisms, we aimed to identify parasite genetic factors implicated in asymptomatic infections through whole transcriptome analysis. We analyzed publicly available transcriptome datasets containing asymptomatic malaria (ASM), uncomplicated malaria (SM), and malaria-naïve (NSM) samples from 35 subjects for differentially expressed genes (DEGs) and long noncoding RNAs. Our analysis identified 755 and 1773 DEGs in ASM vs SM and NSM, respectively. These DEGs revealed sets of genes coding for proteins of unknown functions (PUFs) upregulated in ASM vs SM and ASM, suggesting their role in underlying fundamental molecular mechanisms during asymptomatic infections. Upregulated genes in ASM vs SM revealed a subset of 24 clonal variant genes (CVGs) involved in host-parasite and symbiotic interactions and modulation of the symbiont of host erythrocyte aggregation pathways. Moreover, we identified 237 differentially expressed noncoding RNAs in ASM vs SM, of which 11 were found to interact with CVGs, suggesting their possible role in regulating the expression of CVGs. Our results suggest that P. falciparum utilizes phenotypic plasticity as an adaptive mechanism during asymptomatic infections by upregulating clonal variant genes, with long noncoding RNAs possibly playing a crucial role in their regulation. Thus, our study provides insights into the parasites' genetic factors that confer a fitness advantage during asymptomatic infections.

20.
Viruses ; 16(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39339892

RESUMO

Following the detection of highly pathogenic avian influenza (HPAI) virus in countries bordering Kenya to the west, we conducted surveillance among domestic and wild birds along the shores of Lake Victoria. In addition, between 2018 and 2020, we conducted surveillance among poultry and poultry workers in live bird markets and among wild migratory birds in various lakes that are resting sites during migration to assess introduction and circulation of avian influenza viruses in these populations. We tested 7464 specimens (oropharyngeal (OP) and cloacal specimens) from poultry and 6531 fresh fecal specimens from wild birds for influenza A viruses by real-time RT-PCR. Influenza was detected in 3.9% (n = 292) of specimens collected from poultry and 0.2% (n = 10) of fecal specimens from wild birds. On hemagglutinin subtyping, most of the influenza A positives from poultry (274/292, 93.8%) were H9. Of 34 H9 specimens randomly selected for further subtyping, all were H9N2. On phylogenetic analysis, these viruses were genetically similar to other H9 viruses detected in East Africa. Only two of the ten influenza A-positive specimens from the wild bird fecal specimens were successfully subtyped; sequencing analysis of one specimen collected in 2018 was identified as a low-pathogenicity avian influenza H5N2 virus of the Eurasian lineage, and the second specimen, collected in 2020, was subtyped as H11. A total of 18 OP and nasal specimens from poultry workers with acute respiratory illness (12%) were collected; none were positive for influenza A virus. We observed significant circulation of H9N2 influenza viruses in poultry in live bird markets in Kenya. During the same period, low-pathogenic H5N2 virus was detected in a fecal specimen collected in a site hosting a variety of migratory and resident birds. Although HPAI H5N8 was not detected in this survey, these results highlight the potential for the introduction and establishment of highly pathogenic avian influenza viruses in poultry populations and the associated risk of spillover to human populations.


Assuntos
Animais Selvagens , Aves , Fezes , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Filogenia , Aves Domésticas , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Quênia/epidemiologia , Animais Selvagens/virologia , Aves/virologia , Aves Domésticas/virologia , Fezes/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/classificação , Variação Genética , Ecossistema , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa