Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Infect Dis ; 32(3): 204-209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30950855

RESUMO

PURPOSE OF REVIEW: Despite modern advances in medicine, nonhealing wounds are the number one cause of nontraumatic, lower-limb amputation. Nonhealing wounds are characterized by a healing process stalled between inflammation and tissue remodel/repair, a stage characterized by a shift in macrophage functional phenotype. Characterization of diversity in macrophage functional phenotype in wounds and metabolic contributions to macrophage polarization are discussed. RECENT FINDINGS: Macrophage functional diversity in phenotype has recently evolved from duality (classically activated, pro-inflammatory M1 and alternatively activated, anti-inflammatory M2) to include an additional four alternately activated subphenotypes (M2a, M2b, M2c and M2d). Metabolic pathway utilization shifts characterize macrophage polarization with resulting metabolic and immune outcomes impacting host-pathogen interactions during wound healing. SUMMARY: Recognition of the key role macrophage diversity plays in wound healing, along with better characterization of diverse macrophage phenotypes, will inform our understanding of pathogenicity in wound healing. Comprehensive profiling of the metabolism regulating macrophage polarization and host-pathogen interaction creates opportunity of discovery for innovative new diagnostics and therapeutics for treating nonhealing wounds.


Assuntos
Imunomodulação , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Cicatrização , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/patologia , Animais , Fatores Biológicos/metabolismo , Humanos , Fatores Imunológicos/metabolismo , Macrófagos/classificação
2.
Chem Res Toxicol ; 30(8): 1641-1651, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28693316

RESUMO

Zinc oxide nanoparticles (nZnO) are one of the most highly produced nanomaterials and are used in numerous applications including cosmetics and sunscreens despite reports demonstrating their cytotoxicity. Dissolution is viewed as one of the main sources of nanoparticle (NP) toxicity; however, dissolution studies can be time-intensive to perform and complicated by issues such as particle separation from solution. Our work attempts to overcome some of these challenges by utilizing new methods using UV/vis and fluorescence spectroscopy to quantitatively assess nZnO dissolution in various biologically relevant solutions. All biological buffers tested induce rapid dissolution of nZnO. These buffers, including HEPES, MOPS, and PIPES, are commonly used in cell culture media, cellular imaging solutions, and to maintain physiological pH. Additional studies using X-ray diffraction, FT-IR, X-ray photoelectron spectroscopy, ICP-MS, and TEM were performed to understand how the inclusion of these nonessential media components impacts the behavior of nZnO in RPMI media. From these assessments, we demonstrate that HEPES causes increased dissolution kinetics, boosts the conversion of nZnO into zinc phosphate/carbonate, and, interestingly, alters the structural morphology of the complex precipitates formed with nZnO in cell culture conditions. Cell viability experiments demonstrated that the inclusion of these buffers significantly decrease the viability of Jurkat leukemic cells when challenged with nZnO. This work demonstrates that biologically relevant buffering systems dramatically impact the dynamics of nZnO including dissolution kinetics, morphology, complex precipitate formation, and toxicity profiles.


Assuntos
Meios de Cultura/química , Nanopartículas Metálicas/química , Óxido de Zinco/química , Soluções Tampão , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Células Jurkat , Cinética , Espectrometria de Massas , Nanopartículas Metálicas/toxicidade , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
J Leukoc Biol ; 111(3): 667-693, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34374126

RESUMO

MΦs display remarkable plasticity and the ability to activate diverse responses to a host of intracellular and external stimuli. Despite extensive characterization of M1 MΦs and a broad set of M2 MΦs, comprehensive characterization of functional phenotype and associated metabotype driving this diverse MΦ activation remains. Herein, an ex vivo model was utilized to produce 6 MΦ functional phenotypes. Isolated CD14+ PBMCs were differentiated into resting M0 MΦs, and then polarized into M1 (IFN-γ/LPS), M2a (IL-4/IL-13), M2b (IC/LPS), M2c (IL-10), and M2d (IL-6/LIF) MΦs. The MΦs were profiled using a bioanalyte matrix of 4 cell surface markers, ∼50 secreted proteins, ∼800 expressed myeloid genes, and ∼450 identified metabolites relative to M0 MΦs. Signal protein and expressed gene profiles grouped the MΦs into inflammatory (M1 and M2b) and wound resolution (M2a, M2c, and M2d) phenotypes; however, each had a unique metabolic profile. While both M1 and M2b MΦs shared metabotype profiles consistent with an inflammatory signature; key differences were observed in the TCA cycle, FAO, and OXPHOS. Additionally, M2a, M2c, and M2d MΦs all profiled as tissue repair MΦs; however, metabotype differences were observed in multiple pathways including hexosamine, polyamine, and fatty acid metabolism. These metabolic and other key functional distinctions suggest phagocytic and proliferative functions for M2a MΦs, and angiogenesis and ECM assembly capabilities for M2b, M2c, and M2d MΦs. By integrating metabolomics into a systems analysis of MΦ phenotypes, we provide the most comprehensive map of MΦ diversity to date, along with the global metabolic shifts that correlate to MΦ functional plasticity in these phenotypes.


Assuntos
Lipopolissacarídeos , Transcriptoma , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Metabolômica , Fenótipo
4.
ACS Appl Mater Interfaces ; 11(28): 24933-24944, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31173687

RESUMO

Many promising attributes of ZnO nanoparticles (nZnO) have led to their utilization in numerous electronic devices and biomedical technologies. nZnO fabrication methods can create a variety of intrinsic defects that modulate the properties of nZnO, which can be exploited for various purposes. Here we developed a new synthesis procedure that controls certain defects in pure nZnO that are theorized to contribute to the n-type conductivity of the material. Interestingly, this procedure created defects that reduced the nanoparticle band gap to ∼3.1 eV and generated strong emissions in the violet to blue region while minimizing the defects responsible for the more commonly observed broad green emissions. Several characterization techniques including thermogravimetric analysis, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, Raman, photoluminescence, and inductively coupled plasma mass spectrometry were employed to verify the sample purity, assess how modifications in the synthesis procedure affect the various defects states, and understand how these alterations impact the physical properties. Since the band gap significantly decreased and a relatively narrow visible emissions band was created by these defects, we investigated utilizing these new nZnO for bioimaging applications using traditional fluorescent microscopy techniques. Although most nZnO generally require UV excitation sources to produce emissions, we demonstrate that reducing the band gap allows for a 405 nm laser to sufficiently excite the nanoparticles to detect their emissions during live-cell imaging experiments using a confocal microscope. This work lays the foundation for the use of these new nZnO in various bioimaging applications and enables researchers to investigate the interactions of pure nZnO with cells through fluorescence-based imaging techniques.


Assuntos
Nanopartículas/química , Óxido de Zinco , Humanos , Células Jurkat , Microscopia de Fluorescência , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Óxido de Zinco/química , Óxido de Zinco/farmacologia
5.
Environ Sci Nano ; 5(2): 572-588, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29479436

RESUMO

ZnO nanoparticles (nZnO) are commonly used in nanotechnology applications despite their demonstrated cytotoxicity against multiple cell types. This underscores the significant need to determine the physicochemical properties that influence nZnO cytotoxicity. In this study, we analyzed six similarly sized nZnO formulations, along with SiO2-coated nZnO, bulk ZnO and ZnSO4 as controls. Four of the nZnO samples were synthesized using various wet chemical methods, while three employed high-temperature flame spray pyrolysis (FSP) techniques. X-ray diffraction and optical analysis demonstrated the lattice parameters and electron band gap of the seven nZnO formulations were similar. However, electrophoretic mobility measures, hydrodynamic size, photocatalytic rate constants, dissolution potential, reactive oxygen species (ROS) production and, more importantly, the cytotoxicity of the variously synthesized nZnO towards Jurkat leukemic and primary CD4+ T cells displayed major differences. Surface structure analysis using FTIR, X-ray photoelectron spectroscopies (XPS) and dynamic light scattering (DLS) revealed significant differences in the surface-bound chemical groups and the agglomeration tendencies of the samples. The wet chemical nZnO, with higher cationic surface charge, faster photocatalytic rates, increased extracellular dissolution and ROS generation demonstrated greater cytotoxicity towards both cell types than those made with FSP techniques. Furthermore, principal component analysis (PCA) suggests that the synthesis procedure employed influences which physicochemical properties contribute more to the cytotoxic response. These results suggest that the synthesis approach results in unique surface chemistries and can be a determinant of cellular cytotoxicity and oxidative stress responses.

6.
Nanotechnol Sci Appl ; 9: 29-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486313

RESUMO

ZnO nanoparticles (NPs) have previously been shown to exhibit selective cytotoxicity against certain types of cancerous cells suggesting their potential use in biomedical applications. In this study, we investigate the effect of surface modification of ZnO NPs on their cytotoxicity to both cancerous and primary T cells. Our results show that polyacrylic acid capping produces negatively charged ZnO NPs that are significantly more toxic compared to uncapped positively charged NPs of identical size and composition. In contrast, the greatest selectivity against cancerous cells relative to normal cells is observed with cationic NPs. In addition, differences in NP cytotoxicity inversely correlate with NP hydrodynamic size, propensity for aggregation, and dissolution profiles. The generation of reactive oxygen species (ROS) was also observed in the toxicity mechanism with anionic NPs generating higher levels of mitochondrial superoxide without appreciably affecting glutathione levels. Additional experiments evaluated the combined effects of charged ZnO NPs and nontoxic cationic or anionic CeO2 NPs. Results show that the CeO2 NPs offer protective effects against cytotoxicity from anionic ZnO NPs via antioxidant properties. Altogether, study data indicate that surface modification of NPs and resulting changes in their surface charge affect the level of intracellular ROS production, which can be ameliorated by the CeO2 ROS scavenger, suggesting that ROS generation is a dominant mechanism of ZnO NP cytotoxicity. These findings demonstrate the importance of surface electrostatic properties for controlling NP toxicity and illustrate an approach for engineering NPs with desired properties for potential use in biological applications.

7.
Nanoscale Res Lett ; 10(1): 448, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26577392

RESUMO

Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.

8.
J Vis Exp ; (68)2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23070148

RESUMO

Nowadays, AgNPs are extensively used in the manufacture of consumer products,(1) water disinfectants,(2) therapeutics,(1, 3) and biomedical devices(4) due to their powerful antimicrobial properties.(3-6) These nanoparticle applications are strongly influenced by the AgNP size and aggregation state. Many challenges exist in the controlled fabrication(7) and size-based isolation(4,8) of unfunctionalized, homogenous AgNPs that are free from chemically aggressive capping/stabilizing agents or organic solvents.(7-13) Limitations emerge from the toxicity of reagents, high costs or reduced efficiency of the AgNP synthesis or isolation methods (e.g., centrifugation, size-dependent solubility, size-exclusion chromatography, etc.).(10,14-18) To overcome this, we recently showed that TFU permits greater control over the size, concentration and aggregation state of Creighton AgNPs (300 ml of 15.3 µg ml(-1) down to 10 ml of 198.7 µg ml(-1)) than conventional methods of isolation such as ultracentrifugation.(19) TFU is a recirculation method commonly used for the weight-based isolation of proteins, viruses and cells.(20,21) Briefly, the liquid sample is passed through a series of hollow fiber membranes with pore size ranging from 1,000 kD to 10 kD. Smaller suspended or dissolved constituents in the sample will pass through the porous barrier together with the solvent (filtrate), while the larger constituents are retained (retentate). TFU may be considered a "green" method as it neither damages the sample nor requires additional solvent to eliminate toxic excess reagents and byproducts. Furthermore, TFU may be applied to a large variety of nanoparticles as both hydrophobic and hydrophilic filters are available. The two main objectives of this study were: 1) to illustrate the experimental aspects of the TFU approach through an invited video experience and 2) to demonstrate the feasibility of the TFU method for larger volumes of colloidal nanoparticles and smaller volumes of retentate. First, unfuctionalized AgNPs (4 L, 15.2 µg ml(-1)) were synthesized using the well-established Creighton method(22,23) by the reduction of AgNO3 with NaBH4. AgNP polydispersity was then minimized via a 3-step TFU using a 50-nm filter (460 cm(2)) to remove AgNPs and AgNP-aggregates larger than 50 nm, followed by two 100-kD (200 cm(2) and 20 cm(2)) filters to concentrate the AgNPs. Representative samples were characterized using transmission electron microscopy, UV-Vis absorption spectrophotometry, Raman spectroscopy, and inductively coupled plasma optical emission spectroscopy. The final retentate consisted of highly concentrated (4 ml, 8,539.9 µg ml(-1)) yet lowly aggregated and homogeneous AgNPs of 1-20 nm in diameter. This corresponds to a silver concentration yield of about 62%.


Assuntos
Coloides/química , Nanopartículas Metálicas/química , Prata/química , Ultrafiltração/métodos , Coloides/isolamento & purificação , Prata/isolamento & purificação , Espectrofotometria Ultravioleta , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa