RESUMO
For the first time, this paper reports a smart museum archive box that features a fully integrated wireless powered temperature and humidity sensor. The smart archive box has been specifically developed for microclimate environmental monitoring of stored museum artifacts in cultural heritage applications. The developed sensor does not require a battery and is wirelessly powered using Near Field Communications (NFC). The proposed solution enables a convenient means for wireless sensing with the operator by simply placing a standard smartphone in close proximity to the cardboard archive box. Wireless sensing capability has the advantage of enabling long-term environmental monitoring of the contents of the archive box without having to move and open the box for reading or battery replacement. This contributes to a sustainable preventive conservation strategy and avoids the risk of exposing the contents to the external environment, which may result in degradation of the stored artifacts. In this work, a low-cost and fully integrated NFC sensor has been successfully developed and demonstrated. The developed sensor is capable of wirelessly measuring temperature and relative humidity with a mean error of 0.37 °C and ±0.35%, respectively. The design has also been optimized for low power operation with a measured peak DC power consumption of 900 µW while yielding a 4.5 cm wireless communication range. The power consumption of the NFC sensor is one of the lowest found in the literature. To the author's knowledge, the NFC sensor proposed in this paper is the first reporting of a smart archive box that is wirelessly powered and uniquely integrated within a cardboard archive box.
Assuntos
Artefatos , Tecnologia sem Fio , Umidade , Museus , TemperaturaRESUMO
The very serious problem of temperature and humidity regulation, especially for small and medium-sized museums, galleries, and private collections, can be mitigated by the introduction of novel materials that are easily applicable and of low cost. Within this study, archive boxes with innovative technology are proposed as "smart" boxes that can be used for storage and transportation, in combination with a nanocomposite material consisting of polyvinyl alcohol (PVA) and graphene oxide (GO). The synthesis and characterization of the PVA/GO structure with SEM, Raman, AFM, XRD, Optical Microscopy, and profilometry are fully discussed. It is shown that the composite material can be integrated into the archive box either as a stand-alone film or attached onto fitting carriers, for example, those made of corrugated board. By applying the PVA/GO membrane this way, even with strong daily temperature fluctuations of ΔT = ±24.1 °C, strong external humidity fluctuations can be reduced by -87% inside the box. Furthermore, these humidity regulators were examined as Volatile Organic Compounds (VOCs) adsorbers since gas pollutants like formic acid, formaldehyde, acetic acid, and acetaldehyde are known to exist in museums and induce damages in the displayed or stored items. High rates of VOC adsorption have been measured, with the highest ones corresponding to formic acid (521% weight increase) and formaldehyde (223% weight increase).
RESUMO
Sampling restrictions in analysis of cultural heritage materials narrow the choice of appropriate analytical methods considerably. In this work, near- and mid-FT-IR reflectance data were related to paper properties determined with classical analytical methods using partial least-squares. Nondestructive determination of properties, which are of importance for evaluation of the long-term stability of historical paper, i.e., ash content, lignin content, degree of polymerization of cellulose, pH, and aluminum content, is possible. With the use of a considerable sample set, satisfactory reliability was achieved for all properties but aluminum content. Considering that with age, chemical properties of paper change, dating of historical documents was attempted for the first time, also with success.