Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Methods Biomech Biomed Engin ; 26(4): 412-423, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35499924

RESUMO

This paper describes the development, properties, and evaluation of a musculoskeletal model that reflects the anatomical and prosthetic properties of a transtibial amputee using OpenSim. Average passive prosthesis properties were used to develop CAD models of a socket, pylon, and foot to replace the lower leg. Additional degrees of freedom (DOF) were included in each joint of the prosthesis for potential use in a range of research areas, such as socket torque and socket pistoning. The ankle has three DOFs to provide further generality to the model. Seven transtibial amputee subjects were recruited for this study. 3 D motion capture, ground reaction force, and electromyographic (EMG) data were collected while participants wore their prescribed prosthesis, and then a passive prototype prosthesis instrumented with a 6-DOF load cell in series with the pylon. The model's estimates of the ankle, knee, and hip kinematics comparable to previous studies. The load cell provided an independent experimental measure of ankle joint torque, which was compared to inverse dynamics results from the model and showed a 7.7% mean absolute error. EMG data and muscle outputs from OpenSim's Static Optimization tool were qualitatively compared and showed reasonable agreement. Further improvements to the muscle characteristics or prosthesis-specific foot models may be necessary to better characterize individual amputee gait. The model is open-source and available at (https://simtk.org/projects/biartprosthesis) for other researchers to use to advance our understanding and amputee gait and assist with the development of new lower limb prostheses.


Assuntos
Amputados , Membros Artificiais , Humanos , Marcha/fisiologia , Amputação Cirúrgica , Perna (Membro)/fisiologia , , Extremidade Inferior , Fenômenos Biomecânicos , Desenho de Prótese , Caminhada/fisiologia
2.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176102

RESUMO

People with below-knee amputation walk with asymmetric gaits that over time can lead to further musculoskeletal disorders and decreased quality of life. While prosthesis technology is improving, prosthetic ankles may be fundamentally limited in their ability to restore healthy walking patterns because they do not assist the residual knee joint. The knee on the residual limb has muscular deficits due to the loss of the gastrocnemius, a biarticular muscle that crosses both the ankle and knee. Here we present the design, development, and preliminary evaluation of a robotic knee exoskeleton for people with transtibial amputation. The device is intended to restore gastrocnemius-like flexion moments to the knee on the residual limb. The exoskeleton uses a custom offboard actuation and control system to allow for a simple and lightweight design with high torque capabilities. A preliminary walking experiment with one person with transtibial amputation was conducted. The exoskeleton provided a range of knee flexion torque profiles and had an RMS tracking error of 1.9 Nm across four assistance conditions. This device will be used in future studies to explore the effects of providing knee flexion assistance to people with transtibial amputation during walking. Long term, findings from studies with this exoskeleton could motivate future assistive device designs that improve walking mechanics and quality of life for people with limb loss.


Assuntos
Exoesqueleto Energizado , Amputação Cirúrgica , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Qualidade de Vida , Caminhada/fisiologia
3.
J Biomech ; 129: 110749, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34583198

RESUMO

Lower limb amputees experience gait impairments, in part due to limitations of prosthetic limbs and the lack of a functioning biarticular gastrocnemius (GAS) muscle. Energy storing prosthetic feet restore the function of the soleus, but not GAS. We propose a transtibial prosthesis that implements a spring mechanism to replicate the GAS. A prototype Biarticular Prosthesis (BP) was tested on seven participants with unilateral transtibial amputation. Participants walked on an instrumented treadmill with motion capture, first using their prescribed prosthesis, then with the BP in four different spring stiffness conditions. A custom OpenSim musculoskeletal model, including the BP, was used to estimate kinematics, joint torques, and muscle forces. Kinematic symmetry was evaluated by comparing the amputated and intact angles of the ankle, knee, and hip. The BP knee and ankle torques were compared to the intact GAS. Finally, work done by the BP spring was calculated at the ankle and knee. There were no significant differences between conditions in kinematic symmetry, indicating that the BP performs similarly to prescribed prostheses. When comparing the BP torques to intact GAS, higher spring stiffness better approximated peak GAS torques, but those peaks occurred earlier in the gait cycle. The BP spring did positive work on the knee joint and negative work on the ankle joint, and this work increased as BP spring stiffness increased. The BP has the potential to improve amputee gait compensations associated with the lack of biarticular GAS function, which may reduce their walking effort and improve quality of life.


Assuntos
Amputados , Membros Artificiais , Fenômenos Biomecânicos , Marcha , Humanos , Desenho de Prótese , Qualidade de Vida , Caminhada
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa