Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Syst Parasitol ; 101(3): 36, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700605

RESUMO

The adults of Haemaphysalis (Rhipistoma) adleri Feldman-Muhsam, 1951 (Acari: Ixodidae) are redescribed and the larva of this species is described for the first time here. The adults of H. adleri that we studied were collected from various canid, felid and hyaenid carnivorans (Carnivora: Canidae, Felidae, Hyaenidae) as well as a hedgehog (Erinaceomorpha: Erinaceidae) in Iraq, Israel and West Bank. The males, females and larvae of H. adleri can be differentiated from Haemaphysalis (Rhipistoma) species occurring in the Palearctic portion of West Asia and Egypt as well those in the H. asiatica subgroup by the length of idiosomal setae, development and size of spurs on palpi, dental formula on the hypostome and size of spur on coxae. A lectotype of H. adleri has been designated and the geographic distribution and hosts of this tick species are discussed.


Assuntos
Ixodidae , Larva , Especificidade da Espécie , Animais , Larva/anatomia & histologia , Ixodidae/classificação , Ixodidae/anatomia & histologia , Ixodidae/parasitologia , Feminino , Masculino , Carnívoros/parasitologia , Ásia Ocidental
2.
Psychol Med ; 52(13): 2596-2605, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33267926

RESUMO

BACKGROUND: Subanesthetic ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depression. How single and repeated ketamine treatment modulates the whole-brain functional connectome to affect clinical outcomes remains uncharacterized. METHODS: Data-driven whole brain functional connectivity (FC) analysis was used to identify the functional connections modified by ketamine treatment in patients with major depressive disorder (MDD). MDD patients (N = 61, mean age = 38, 19 women) completed baseline resting-state (RS) functional magnetic resonance imaging and depression symptom scales. Of these patients, n = 48 and n = 51, completed the same assessments 24 h after receiving one and four 0.5 mg/kg intravenous ketamine infusions. Healthy controls (HC) (n = 40, 24 women) completed baseline assessments with no intervention. Analysis of RS FC addressed effects of diagnosis, time, and remitter status. RESULTS: Significant differences (p < 0.05, corrected) in RS FC were observed between HC and MDD at baseline in the somatomotor network and between association and default mode networks. These disruptions in FC in MDD patients trended toward control patterns with ketamine treatment. Furthermore, following serial ketamine infusions, significant decreases in FC were observed between the cerebellum and salience network (SN) (p < 0.05, corrected). Patient remitters showed increased FC between the cerebellum and the striatum prior to treatment that decreased following treatment, whereas non-remitters showed the opposite pattern. CONCLUSION: Results support that ketamine treatment leads to neurofunctional plasticity between distinct neural networks that are shown as disrupted in MDD patients. Cortico-striatal-cerebellar loops that encompass the SN could be a potential biomarker for ketamine treatment.


Assuntos
Conectoma , Transtorno Depressivo Maior , Ketamina , Humanos , Feminino , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo
3.
J Biol Chem ; 288(2): 759-69, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23223230

RESUMO

In yeast, Adh1 (alcohol dehydrogenase 1) is an abundant zinc-binding protein that is required for the conversion of acetaldehyde to ethanol. Through transcriptome profiling of the Schizosaccharomyces pombe genome, we identified a natural antisense transcript at the adh1 locus that is induced in response to zinc limitation. This antisense transcript (adh1AS) shows a reciprocal expression pattern to that of the adh1 mRNA partner. In this study, we show that increased expression of the adh1AS transcript in zinc-limited cells is necessary for the repression of adh1 gene expression and that the increased level of the adh1AS transcript in zinc-limited cells is a result of two mechanisms. At the transcriptional level, the adh1AS transcript is expressed at a high level in zinc-limited cells. In addition to this transcriptional control, adh1AS transcripts preferentially accumulate in zinc-limited cells when the adh1AS transcript is expressed from a constitutive promoter. This secondary mechanism requires the simultaneous expression of adh1. Our studies reveal how multiple mechanisms can synergistically control the ratio of sense to antisense transcripts and highlight a novel mechanism by which adh1 gene expression can be controlled by cellular zinc availability.


Assuntos
Álcool Desidrogenase/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Fúngicos , RNA Mensageiro/genética , Schizosaccharomyces/genética , Zinco/fisiologia , Reação em Cadeia da Polimerase , RNA Antissenso/genética , Transcriptoma
4.
Biochim Biophys Acta ; 1823(9): 1468-83, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22610083

RESUMO

Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP-IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals.


Assuntos
Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/deficiência , Ferro/metabolismo , Elementos de Resposta/genética , Animais , Ferritinas/genética , Ferritinas/metabolismo , Regulação da Expressão Gênica , Homeostase/fisiologia , Humanos , Transporte de Íons , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/genética , Mamíferos , Camundongos , Camundongos Knockout , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Regiões não Traduzidas/genética
5.
Sci Rep ; 13(1): 2841, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36801903

RESUMO

Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique involving administration of well-tolerated electrical current to the brain through scalp electrodes. TDCS may improve symptoms in neuropsychiatric disorders, but mixed results from recent clinical trials underscore the need to demonstrate that tDCS can modulate clinically relevant brain systems over time in patients. Here, we analyzed longitudinal structural MRI data from a randomized, double-blind, parallel-design clinical trial in depression (NCT03556124, N = 59) to investigate whether serial tDCS individually targeted to the left dorso-lateral prefrontal cortex (DLPFC) can induce neurostructural changes. Significant (FWEc p < 0.05) treatment-related gray matter changes were observed with active high-definition (HD) tDCS relative to sham tDCS within the left DLPFC stimulation target. No changes were observed with active conventional tDCS. A follow-up analysis within individual treatment groups revealed significant gray matter increases with active HD-tDCS in brain regions functionally connected with the stimulation target, including the bilateral DLPFC, bilateral posterior cingulate cortex, subgenual anterior cingulate cortex, and the right hippocampus, thalamus and left caudate brain regions. Integrity of blinding was verified, no significant differences in stimulation-related discomfort were observed between treatment groups, and tDCS treatments were not augmented by any other adjunct treatments. Overall, these results demonstrate that serial HD-tDCS leads to neurostructural changes at a predetermined brain target in depression and suggest that such plasticity effects may propagate over brain networks.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Depressão/terapia , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Substância Cinzenta/diagnóstico por imagem , Método Duplo-Cego
6.
Heliyon ; 9(4): e14692, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37089293

RESUMO

Purpose: To develop a large animal preclinical model of thromboembolic stroke with stable, protracted large vessel occlusion (LVO) utilizing an autologous clot. Materials and methods: A reproducible canine model of large vessel occlusion stroke was established by endovascular placement of an autologous clot into the middle cerebral artery (MCA) of six adult hounds and confirmed using digital subtraction angiography (DSA). Infarct volume and evidence of hemorrhage were determined by magnetic resonance imaging (MRI) 7 h after occlusion and Thrombolysis in Cerebral Infarction scale (TICI) was assessed before and after clot placement and at 1, 6, 7, and 9 h after middle cerebral artery occlusion (MCAO). Heart rate (HR) and blood pressure (BP) were monitored continuously and invasively through an arterial sheath throughout the procedures and complete blood count and blood gas analysis completed at time of sacrifice. Histopathological findings at time of sacrifice were used to confirm stroke volume and hemorrhage. Results: MCAO with resulting TICI 0 flow was observed in all six animals, verified by serial DSA, and lack of collateral flow persisted for 9 h after clot placement until time of sacrifice. The mean infarct volume was 47.0 ± 6.7% of the ipsilateral hemisphere and no events of spontaneous recanalization or clot autolysis were observed. Conclusion: We demonstrate a thromboembolic canine model of MCAO that is both feasible and results in consistent infarct volumes to generate a clinically relevant LVO. This model is important to evaluate treatment of LVO in acute ischemic stroke (AIS) outside the established 4.5 h recombinant tissue plasminogen activator (rTPA) therapeutic window utilizing a prolonged occlusive thrombus.

7.
J Cardiovasc Dev Dis ; 9(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35448083

RESUMO

The development and translation of regenerative medicine approaches for the treatment of hypoplastic left heart syndrome (HLHS) provides a promising alternative to the current standard of care. We review the strategies that have been pursued to date and those that hold the greatest promise in moving forward. Significant challenges remain. Continued scientific advances and technological breakthroughs will be required if we are to translate this technology to the clinic and move from palliative to curative treatment.

8.
Extracell Vesicle ; 12022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36330420

RESUMO

Patients with single ventricle heart defects requires a series of staged open-heart procedures, termed Fontan palliation. However, while lifesaving, these operations are associated with significant morbidity and early mortality. The attendant complications are thought to arise in response to the abnormal hemodynamics induced by Fontan palliation, although the pathophysiology underlying these physicochemical changes in cardiovascular and other organs remain unknown. Here, we investigated the microRNA (miRNA) content in serum and serum-derived extracellular vesicles (EVs) by sequencing small RNAs from a physiologically relevant sheep model of the Fontan operation. The differential expression analysis identified the enriched miRNA clusters in (1) serum vs. serum-derived EVs and (2) pre-Fontan EVs vs. post-Fontan EVs. Metascape analysis showed that the overexpressed subset of EV miRNAs by Fontan procedure target liver-specific cells, underscoring a potentially important pathway involved in the liver dysfunction that occurs as a consequence of Fontan palliation. We also found that post-Fontan EV miRNAs were associated with senescence and cell death, whereas pre-Fontan EV miRNAs were associated with stem cell maintenance and epithelial-to-mesenchymal transition. This study shows great potential to identify novel circulating EV biomarkers from Fontan sheep serum that may be used for the diagnosis, prognosis, and therapeutics for patients that have undergone Fontan palliation.

9.
Med J (Ft Sam Houst Tex) ; (PB 8-21-01/02/03): 8-11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33666905

RESUMO

The recent emergence of SARS-CoV-2 has led to a global pandemic of unprecedented proportions. Current diagnosis of COVID-19 relies on the detection of SARS-CoV-2 RNA by reverse transcription polymerase chain reaction (RT-PCR) in upper and lower respiratory specimens. While sensitive and specific, these RT-PCR assays require considerable supplies and reagents, which are often limited during global pandemics and surge testing. Here, we show that a nasopharyngeal swab pooling strategy can detect a single positive sample in pools of up to 10 samples without sacrificing RT-PCR sensitivity and specificity. We also report that this pooling strategy can be applied to rapid, moderate complexity assays, such as the BioFire COVID-19 test. Implementing a pooling strategy can significantly increase laboratory testing capacity while simultaneously reducing turnaround times for rapid identification and isolation of positive COVID-19 cases in high risk populations.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes , Humanos , Nasofaringe/virologia , Sensibilidade e Especificidade
10.
J Neural Eng ; 18(5)2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555822

RESUMO

Objective. We present an easy-to-implement technique for accurate electrode placement over repeated transcranial electrical stimulation (tES) sessions across participants and time. tES is an emerging, non-invasive neuromodulation technique that delivers electrical stimulation using scalp electrodes.Approach.The tES electrode placement technique was developed during an exploratory clinical trial aimed at targeting a specific MNI-atlas cortical coordinate inN= 59 depressed participants (32 F, mean age: 31.1 ± 8.3 SD). Each participant completed 12 sessions of active or sham stimulation, administered using high-definition (HD) or conventional sized electrode montages placed according to the proposed technique. Neuronavigation data measuring the distances between the identified and the intended stimulation site, simulations, and cerebral blood flow (CBF) data at baseline and post-treatment were acquired to evaluate the targeting characteristics of the proposed technique.Main results.Neuronavigation measurements indicate accurate electrode placement to within 1 cm of the stimulation target on average across repeated sessions. Simulations predict that these placement characteristics result in minimal electric field differences at the stimulation target (>0.90 correlation, and <10% change in the modal electric field and targeted volume). Additionally, significant changes in %CBF (relative to baseline) under the stimulation target in the active stimulation group relative to sham confirmed that the proposed placement technique introduces minimal bias in the spatial location of the cortical coordinate ultimately targeted. Finally, we show proof of concept that the proposed technique provides similar accuracy of electrode placement at other cortical targets.Significance.For voxel-level cortical targets, existing techniques based on cranial landmarks are suboptimal. Our results show that the proposed electrode placement approach provides high consistency for the accurate targeting of such specific cortical regions. Overall, the proposed technique now enables the accurate targeting of locations not accessible with the existing 10-20 system such as scalp-projections of clinically-relevant cortical coordinates identified by brain mapping studies. Clinical trial ID: NCT03556124.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Adulto , Estimulação Elétrica , Eletrodos , Humanos , Adulto Jovem
11.
Transl Psychiatry ; 11(1): 138, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627624

RESUMO

Recent clinical trials of transcranial direct current stimulation (tDCS) in depression have shown contrasting results. Consequently, we used in-vivo neuroimaging to confirm targeting and modulation of depression-relevant neural circuitry by tDCS. Depressed participants (N = 66, Baseline Hamilton Depression Rating Scale (HDRS) 17-item scores ≥14 and <24) were randomized into Active/Sham and High-definition (HD)/Conventional (Conv) tDCS groups using a double-blind, parallel design, and received tDCS individually targeted at the left dorsolateral prefrontal cortex (DLPFC). In accordance with Ampere's Law, tDCS currents were hypothesized to induce magnetic fields at the stimulation-target, measured in real-time using dual-echo echo-planar-imaging (DE-EPI) MRI. Additionally, the tDCS treatment trial (consisting of 12 daily 20-min sessions) was hypothesized to induce cerebral blood flow (CBF) changes post-treatment at the DLPFC target and in the reciprocally connected anterior cingulate cortex (ACC), measured using pseudo-continuous arterial spin labeling (pCASL) MRI. Significant tDCS current-induced magnetic fields were observed at the left DLPFC target for both active stimulation montages (Brodmann's area (BA) 46: pHD = 0.048, Cohen's dHD = 0.73; pConv = 0.018, dConv = 0.86; BA 9: pHD = 0.011, dHD = 0.92; pConv = 0.022, dConv = 0.83). Significant longitudinal CBF increases were observed (a) at the left DLPFC stimulation-target for both active montages (pHD = 3.5E-3, dHD = 0.98; pConv = 2.8E-3, dConv = 1.08), and (b) at ACC for the HD-montage only (pHD = 2.4E-3, dHD = 1.06; pConv = 0.075, dConv = 0.64). These results confirm that tDCS-treatment (a) engages the stimulation-target, and (b) modulates depression-relevant neural circuitry in depressed participants, with stronger network-modulations induced by the HD-montage. Although not primary outcomes, active HD-tDCS showed significant improvements of anhedonia relative to sham, though HDRS scores did not differ significantly between montages post-treatment.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Depressão , Método Duplo-Cego , Humanos , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem
12.
J Vis Exp ; (165)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33283781

RESUMO

BACKGROUND: Basilar artery occlusion (BAO) is a subset of posterior circulation stroke that carries a mortality as high as 90%.  The current clinical standard to diagnose ischemic stroke include computerized tomography (CT), CT angiography and perfusion and magnetic resonance imaging (MRI). Large animal pre-clinical models to accurately reflect the clinical disease as well as methods to assess stroke burden and evaluate treatments are lacking. METHODS: We describe a canine model of large vessel occlusion (LVO) stroke in the posterior circulation, and developed a laser speckle imaging (LSI) protocol to monitor perfusion changes in real time.  We then utilized high b-value DWI (b=1800s/mm2) MRI to increase detection sensitivity. We also evaluated the ability of magnetic resonance angiography (MRA) to assess arterial occlusion and correlate with DSA. Finally, we verified infarct size from apparent diffusion coefficient (ADC) mapping with histology.  Results:  Administration of thromboembolism occluded the basilar artery as tracked by DSA (n=7).   LSI correlated with DSA, demonstrating a reduction in perfusion after stroke onset that persisted throughout the experiment, allowing us to monitor perfusion in real time.  DWI with an optimized b-value for dogs illustrated the stroke volume and allowed us to derive ADC and magnetic resonance angiography (MRA) images. The MRA performed at the end of the experiment correlated with DSA performed after occlusion. Finally, stroke burden on MRI correlated with histology. CONCLUSIONS: Our studies demonstrate real time perfusion imaging using LSI of a canine thromboembolic LVO model of posterior circulation stroke, which utilizes multimodal imaging important in the diagnosis and treatment of ischemic stroke.


Assuntos
Infarto Cerebral/diagnóstico por imagem , Lasers , Imageamento por Ressonância Magnética , Perfusão , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Arteriopatias Oclusivas/complicações , Arteriopatias Oclusivas/diagnóstico por imagem , Artéria Basilar/diagnóstico por imagem , Artéria Basilar/patologia , Artéria Basilar/fisiopatologia , Infarto Cerebral/diagnóstico , Infarto Cerebral/patologia , Infarto Cerebral/fisiopatologia , Angiografia por Tomografia Computadorizada , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Cães , Angiografia por Ressonância Magnética , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Volume Sistólico
13.
Elife ; 92020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33164745

RESUMO

Sepsis is a systemic inflammatory response to infection and a leading cause of death. Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in mucosal tissues that recognize bacterial ligands. We investigated MAIT cells during clinical and experimental sepsis, and their contribution to host responses. In experimental sepsis, MAIT-deficient mice had significantly increased mortality and bacterial load, and reduced tissue-specific cytokine responses. MAIT cells of WT mice expressed lower levels of IFN-γ and IL-17a during sepsis compared to sham surgery, changes not seen in non-MAIT T cells. MAIT cells of patients at sepsis presentation were significantly reduced in frequency compared to healthy donors, and were more activated, with decreased IFN-γ production, compared to both healthy donors and paired 90-day samples. Our data suggest that MAIT cells are highly activated and become dysfunctional during clinical sepsis, and contribute to tissue-specific cytokine responses that are protective against mortality during experimental sepsis.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/fisiologia , Sepse/imunologia , Animais , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sepse/metabolismo
14.
Open Forum Infect Dis ; 7(5): ofaa136, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32462045

RESUMO

Cholera remains a significant public health problem worldwide. In settings of declining incidence, serosurveillance may be used to augment clinical surveillance. We utilized dried blood spot sampling and cholera-specific antibody testing to examine the serologic profiles of vaccinated and unvaccinated children in southern Vietnam, where cholera was recently eliminated.

15.
Nat Commun ; 11(1): 296, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941883

RESUMO

Regulation of cellular iron homeostasis is crucial as both iron excess and deficiency cause hematological and neurodegenerative diseases. Here we show that mice lacking iron-regulatory protein 2 (Irp2), a regulator of cellular iron homeostasis, develop diabetes. Irp2 post-transcriptionally regulates the iron-uptake protein transferrin receptor 1 (TfR1) and the iron-storage protein ferritin, and dysregulation of these proteins due to Irp2 loss causes functional iron deficiency in ß cells. This impairs Fe-S cluster biosynthesis, reducing the function of Cdkal1, an Fe-S cluster enzyme that catalyzes methylthiolation of t6A37 in tRNALysUUU to ms2t6A37. As a consequence, lysine codons in proinsulin are misread and proinsulin processing is impaired, reducing insulin content and secretion. Iron normalizes ms2t6A37 and proinsulin lysine incorporation, restoring insulin content and secretion in Irp2-/- ß cells. These studies reveal a previously unidentified link between insulin processing and cellular iron deficiency that may have relevance to type 2 diabetes in humans.


Assuntos
Insulina/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Ferro/metabolismo , RNA de Transferência de Lisina/metabolismo , tRNA Metiltransferases/metabolismo , Animais , Linhagem Celular Tumoral , Intolerância à Glucose/genética , Homeostase , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Insulinoma/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteínas Ferro-Enxofre/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , RNA de Transferência de Lisina/genética , Ratos , Resposta a Proteínas não Dobradas/genética , tRNA Metiltransferases/genética
16.
Elife ; 82019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31532389

RESUMO

Iron is essential for survival of most organisms. All organisms have thus developed mechanisms to sense, acquire and sequester iron. In C. elegans, iron uptake and sequestration are regulated by HIF-1. We previously showed that hif-1 mutants are developmentally delayed when grown under iron limitation. Here we identify nhr-14, encoding a nuclear receptor, in a screen conducted for mutations that rescue the developmental delay of hif-1 mutants under iron limitation. nhr-14 loss upregulates the intestinal metal transporter SMF-3 to increase iron uptake in hif-1 mutants. nhr-14 mutants display increased expression of innate immune genes and DAF-16/FoxO-Class II genes, and enhanced resistance to Pseudomonas aeruginosa. These responses are dependent on the transcription factor PQM-1, which localizes to intestinal cell nuclei in nhr-14 mutants. Our data reveal how C. elegans utilizes nuclear receptors to regulate innate immunity and iron availability, and show iron sequestration as a component of the innate immune response.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imunidade Inata , Ferro/metabolismo , Pseudomonas aeruginosa/imunologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Transporte Biológico , Resistência à Doença , Infecções por Pseudomonas/imunologia , Oligoelementos/metabolismo
17.
PLoS Negl Trop Dis ; 12(1): e0006196, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377882

RESUMO

BACKGROUND: Vibrio cholerae causes over 2 million cases of cholera and 90,000 deaths each year. Serosurveillance can be a useful tool for estimating the intensity of cholera transmission and prioritizing populations for cholera control interventions. Current methods involving venous blood draws and downstream specimen storage and transport methods pose logistical challenges in most settings where cholera strikes. To overcome these challenges, we developed methods for determining cholera-specific immune responses from dried blood spots (DBS). METHODOLOGY/PRINCIPAL FINDINGS: As conventional vibriocidal assay methods were unsuitable for DBS eluates from filter paper, we adopted a drop-plate culture method. We show that DBS collected from volunteers in South Sudan, and stored for prolonged periods in field conditions, retained functional vibriocidal antibodies, the titers of which correlated with paired serum titers determined by conventional spectrophotometric methods (r = 0.94, p = 0.00012). We also showed that eluates from DBS Serum Separator cards could be used with conventional spectrophotometric vibriocidal methods, and that they correlated with paired serum at a wide range of titers (r = 0.96, p<0.0001). Similarly, we used ELISA methods to show that V. cholerae O-specific polysaccharide antibody responses from DBS eluates correlated with results from paired serum for IgG (r = 0.85, p = 0.00006), IgM (r = 0.79, p = 0.00049) and IgA (r = 0.73, p = 0.0019), highlighting its potential for use in determination of isotype-specific responses. Storage of DBS cards at a range of temperatures did not change antibody responses. CONCLUSION: In conclusion, we have developed and demonstrated a proof-of-concept for assays utilizing DBS for assessing cholera-specific immune responses.


Assuntos
Anticorpos Antibacterianos/sangue , Cólera/diagnóstico , Dessecação , Testes Sorológicos/métodos , Manejo de Espécimes/métodos , Vibrio cholerae/imunologia , Humanos , Estudo de Prova de Conceito , Sudão
18.
Front Plant Sci ; 6: 1253, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834765

RESUMO

Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.

19.
Front Pharmacol ; 5: 113, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904417

RESUMO

Iron is involved in many biological processes essential for sustaining life. In excess, iron is toxic due to its ability to catalyze the formation of free radicals that damage macromolecules. Organisms have developed specialized mechanisms to tightly regulate iron uptake, storage and efflux. Over the past decades, vertebrate model organisms have led to the identification of key genes and pathways that regulate systemic and cellular iron metabolism. This review provides an overview of iron metabolism in the roundworm Caenorhabditis elegans and highlights recent studies on the role of hypoxia and insulin signaling in the regulation of iron metabolism. Given that iron, hypoxia and insulin signaling pathways are evolutionarily conserved, C. elegans provides a genetic model organism that promises to provide new insights into mechanisms regulating mammalian iron metabolism.

20.
PLoS One ; 5(12): e15524, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21203520

RESUMO

Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%), Typhimurium (15.0%) and Heidelberg (1.7%). We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard.


Assuntos
Técnicas de Transferência de Genes , Salmonella enterica/genética , Animais , Sequência de Bases , Galinhas , Eletroforese em Gel de Campo Pulsado , Deleção de Genes , Genes Bacterianos , Geografia , Modelos Genéticos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase/métodos , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa