RESUMO
The ecosystem services provided by dung beetles are well known and valued. Dung beetles bury dung for feeding and breeding, and it is generally thought that the process of burying dung increases nutrient uptake by plant roots, which promotes plant growth. Many studies have tested the effects of dung beetles on plant growth, but there has been no quantitative synthesis of these studies. Here we use a multi-level meta-analysis to estimate the average effect of dung beetles on plant growth and investigate factors that moderate this effect. We identified 28 publications that investigated dung beetle effects on plant growth. Of these, 24 contained the minimum quantitative data necessary to include in a meta-analysis. Overall, we found that dung beetles increased plant growth by 17%; the 95% CI for possible values for the true increase in plant growth that were most compatible with our data, given our statistical model, ranged from 1% to 35%. We found evidence that the dung beetle-plant growth relationship is influenced by the plant measurement type and the number of beetles accessing the dung. However, beetles did not increase plant growth in all quantitative trials, as individual effect sizes ranged from -72% to 806%, suggesting important context-dependence in the provision of ecosystem services.
Assuntos
Besouros , Ecossistema , Animais , Melhoramento Vegetal , Plantas , FezesRESUMO
KRAS and BRAF activating mutations drive tumorigenesis through constitutive activation of the MAPK pathway. As these tumours represent an area of high unmet medical need, multiple allosteric MEK inhibitors, which inhibit MAPK signalling in both genotypes, are being tested in clinical trials. Impressive single-agent activity in BRAF-mutant melanoma has been observed; however, efficacy has been far less robust in KRAS-mutant disease. Here we show that, owing to distinct mechanisms regulating MEK activation in KRAS- versus BRAF-driven tumours, different mechanisms of inhibition are required for optimal antitumour activity in each genotype. Structural and functional analysis illustrates that MEK inhibitors with superior efficacy in KRAS-driven tumours (GDC-0623 and G-573, the former currently in phase I clinical trials) form a strong hydrogen-bond interaction with S212 in MEK that is critical for blocking MEK feedback phosphorylation by wild-type RAF. Conversely, potent inhibition of active, phosphorylated MEK is required for strong inhibition of the MAPK pathway in BRAF-mutant tumours, resulting in superior efficacy in this genotype with GDC-0973 (also known as cobimetinib), a MEK inhibitor currently in phase III clinical trials. Our study highlights that differences in the activation state of MEK in KRAS-mutant tumours versus BRAF-mutant tumours can be exploited through the design of inhibitors that uniquely target these distinct activation states of MEK. These inhibitors are currently being evaluated in clinical trials to determine whether improvements in therapeutic index within KRAS versus BRAF preclinical models translate to improved clinical responses in patients.
Assuntos
Genes ras/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias/enzimologia , Neoplasias/genética , Proteína Oncogênica p21(ras)/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Regulação Alostérica/efeitos dos fármacos , Azetidinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Células HCT116 , Humanos , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Neoplasias/patologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas B-raf/genéticaRESUMO
Microtubules have pivotal roles in fundamental cellular processes and are targets of antitubulin chemotherapeutics. Microtubule-targeted agents such as Taxol and vincristine are prescribed widely for various malignancies, including ovarian and breast adenocarcinomas, non-small-cell lung cancer, leukaemias and lymphomas. These agents arrest cells in mitosis and subsequently induce cell death through poorly defined mechanisms. The strategies that resistant tumour cells use to evade death induced by antitubulin agents are also unclear. Here we show that the pro-survival protein MCL1 (ref. 3) is a crucial regulator of apoptosis triggered by antitubulin chemotherapeutics. During mitotic arrest, MCL1 protein levels decline markedly, through a post-translational mechanism, potentiating cell death. Phosphorylation of MCL1 directs its interaction with the tumour-suppressor protein FBW7, which is the substrate-binding component of a ubiquitin ligase complex. The polyubiquitylation of MCL1 then targets it for proteasomal degradation. The degradation of MCL1 was blocked in patient-derived tumour cells that lacked FBW7 or had loss-of-function mutations in FBW7, conferring resistance to antitubulin agents and promoting chemotherapeutic-induced polyploidy. Additionally, primary tumour samples were enriched for FBW7 inactivation and elevated MCL1 levels, underscoring the prominent roles of these proteins in oncogenesis. Our findings suggest that profiling the FBW7 and MCL1 status of tumours, in terms of protein levels, messenger RNA levels and genetic status, could be useful to predict the response of patients to antitubulin chemotherapeutics.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Fibroblastos , Humanos , Camundongos , Mitose/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Paclitaxel/farmacologia , Farmacogenética , Fosforilação/efeitos dos fármacos , Poliploidia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Vincristina/farmacologiaRESUMO
The ATP-dependent degradation of polyubiquitylated proteins by the 26S proteasome is essential for the maintenance of proteome stability and the regulation of a plethora of cellular processes. Degradation of substrates is preceded by the removal of polyubiquitin moieties through the isopeptidase activity of the subunit Rpn11. Here we describe three crystal structures of the heterodimer of the Mpr1-Pad1-N-terminal domains of Rpn8 and Rpn11, crystallized as a fusion protein in complex with a nanobody. This fusion protein exhibits modest deubiquitylation activity toward a model substrate. Full activation requires incorporation of Rpn11 into the 26S proteasome and is dependent on ATP hydrolysis, suggesting that substrate processing and polyubiquitin removal are coupled. Based on our structures, we propose that premature activation is prevented by the combined effects of low intrinsic ubiquitin affinity, an insertion segment acting as a physical barrier across the substrate access channel, and a conformationally unstable catalytic loop in Rpn11. The docking of the structure into the proteasome EM density revealed contacts of Rpn11 with ATPase subunits, which likely stabilize the active conformation and boost the affinity for the proximal ubiquitin moiety. The narrow space around the Rpn11 active site at the entrance to the ATPase ring pore is likely to prevent erroneous deubiquitylation of folded proteins.
Assuntos
Endopeptidases/química , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas de Saccharomyces cerevisiae/química , Cristalografia , Dimerização , Endopeptidases/metabolismo , Modelos Biológicos , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismoRESUMO
Activating mutations in KRAS and BRAF are found in more than 30% of all human tumours and 40% of melanoma, respectively, thus targeting this pathway could have broad therapeutic effects. Small molecule ATP-competitive RAF kinase inhibitors have potent antitumour effects on mutant BRAF(V600E) tumours but, in contrast to mitogen-activated protein kinase kinase (MEK) inhibitors, are not potent against RAS mutant tumour models, despite RAF functioning as a key effector downstream of RAS and upstream of MEK. Here we show that ATP-competitive RAF inhibitors have two opposing mechanisms of action depending on the cellular context. In BRAF(V600E) tumours, RAF inhibitors effectively block the mitogen-activated protein kinase (MAPK) signalling pathway and decrease tumour growth. Notably, in KRAS mutant and RAS/RAF wild-type tumours, RAF inhibitors activate the RAF-MEK-ERK pathway in a RAS-dependent manner, thus enhancing tumour growth in some xenograft models. Inhibitor binding activates wild-type RAF isoforms by inducing dimerization, membrane localization and interaction with RAS-GTP. These events occur independently of kinase inhibition and are, instead, linked to direct conformational effects of inhibitors on the RAF kinase domain. On the basis of these findings, we demonstrate that ATP-competitive kinase inhibitors can have opposing functions as inhibitors or activators of signalling pathways, depending on the cellular context. Furthermore, this work provides new insights into the therapeutic use of ATP-competitive RAF inhibitors.
Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Quinases raf/antagonistas & inibidores , Quinases raf/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Benzamidas/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Indenos/farmacologia , Indóis/farmacologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Multimerização Proteica , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/deficiência , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/química , Quinases raf/genética , Proteínas ras/genética , Proteínas ras/metabolismoRESUMO
The nuclear envelope is a double-layered membrane that encloses the nuclear genome and transcriptional machinery. In dividing cells of metazoa, the nucleus completely disassembles during mitosis, creating the need to re-establish the nuclear compartment at the end of each cell division. Given the crucial role of the nuclear envelope in gene regulation and cellular organization, it is not surprising that its biogenesis and organization have become active research areas. We will review recent insights into nuclear membrane dynamics during the cell cycle.
Assuntos
Estágios do Ciclo de Vida/fisiologia , Membrana Nuclear/fisiologia , Vertebrados/fisiologia , Animais , Ciclo Celular/fisiologiaRESUMO
VCP (also known as p97 or Cdc48p in yeast) is an AAA(+) ATPase regulating endoplasmic reticulum-associated degradation. After high-throughput screening, we developed compounds that inhibit VCP via different mechanisms, including covalent modification of an active site cysteine and a new allosteric mechanism. Using photoaffinity labeling, structural analysis and mutagenesis, we mapped the binding site of allosteric inhibitors to a region spanning the D1 and D2 domains of adjacent protomers encompassing elements important for nucleotide-state sensing and ATP hydrolysis. These compounds induced an increased affinity for nucleotides. Interference with nucleotide turnover in individual subunits and distortion of interprotomer communication cooperated to impair VCP enzymatic activity. Chemical expansion of this allosteric class identified NMS-873, the most potent and specific VCP inhibitor described to date, which activated the unfolded protein response, interfered with autophagy and induced cancer cell death. The consistent pattern of cancer cell killing by covalent and allosteric inhibitors provided critical validation of VCP as a cancer target.
Assuntos
Acetanilidas/farmacologia , Adenosina Trifosfatases/antagonistas & inibidores , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Acetanilidas/química , Adenosina Trifosfatases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/química , Benzotiazóis/química , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Neoplasias/metabolismo , Relação Estrutura-Atividade , Proteína com ValosinaRESUMO
The Ras gene is frequently mutated in cancer, and mutant Ras drives tumorigenesis. Although Ras is a central oncogene, small molecules that bind to Ras in a well-defined manner and exert inhibitory effects have not been uncovered to date. Through an NMR-based fragment screen, we identified a group of small molecules that all bind to a common site on Ras. High-resolution cocrystal structures delineated a unique ligand-binding pocket on the Ras protein that is adjacent to the switch I/II regions and can be expanded upon compound binding. Structure analysis predicts that compound-binding interferes with the Ras/SOS interactions. Indeed, selected compounds inhibit SOS-mediated nucleotide exchange and prevent Ras activation by blocking the formation of intermediates of the exchange reaction. The discovery of a small-molecule binding pocket on Ras with functional significance provides a new direction in the search of therapeutically effective inhibitors of the Ras oncoprotein.
Assuntos
Nucleotídeos/metabolismo , Proteínas Son Of Sevenless/metabolismo , Proteínas ras/metabolismo , Sítios de Ligação , Linhagem Celular , Humanos , Ligantes , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas ras/químicaRESUMO
The BH3-mimetic ABT-737 and an orally bioavailable compound of the same class, navitoclax (ABT-263), have shown promising antitumor efficacy in preclinical and early clinical studies. Although both drugs avidly bind Bcl-2, Bcl-x(L), and Bcl-w in vitro, we find that Bcl-2 is the critical target in vivo, suggesting that patients with tumors overexpressing Bcl-2 will probably benefit. In human non-Hodgkin lymphomas, high expression of Bcl-2 but not Bcl-x(L) predicted sensitivity to ABT-263. Moreover, we show that increasing Bcl-2 sensitized normal and transformed lymphoid cells to ABT-737 by elevating proapoptotic Bim. In striking contrast, increasing Bcl-x(L) or Bcl-w conferred robust resistance to ABT-737, despite also increasing Bim. Cell-based protein redistribution assays unexpectedly revealed that ABT-737 disrupts Bcl-2/Bim complexes more readily than Bcl-x(L)/Bim or Bcl-w/Bim complexes. These results have profound implications for how BH3-mimetics induce apoptosis and how the use of these compounds can be optimized for treating lymphoid malignancies.
Assuntos
Compostos de Anilina/farmacologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Terapia de Alvo Molecular , Nitrofenóis/farmacologia , Sulfonamidas/farmacologia , Proteína bcl-X/antagonistas & inibidores , Compostos de Anilina/uso terapêutico , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Compostos de Bifenilo/uso terapêutico , Morte Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia/genética , Leucemia/patologia , Linfoma/genética , Linfoma/patologia , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Nitrofenóis/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismoRESUMO
The formation of the nuclear envelope (NE) around chromatin is a major membrane-remodelling event that occurs during cell division of metazoa. It is unclear whether the nuclear membrane reforms by the fusion of NE fragments or if it re-emerges from an intact tubular network of the endoplasmic reticulum (ER). Here, we show that NE formation and expansion requires a tubular ER network and occurs efficiently in the presence of the membrane fusion inhibitor GTPgammaS. Chromatin recruitment of membranes, which is initiated by tubule-end binding, followed by the formation, expansion and sealing of flat membrane sheets, is mediated by DNA-binding proteins residing in the ER. Thus, chromatin plays an active role in reshaping of the ER during NE formation.
Assuntos
Cromatina/metabolismo , Retículo Endoplasmático/metabolismo , Membrana Nuclear/metabolismo , Animais , Núcleo Celular/metabolismo , DNA/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Microscopia Confocal , Modelos Biológicos , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , XenopusRESUMO
Since 1968, the Australian Dung Beetle Project has carried out field releases of 43 deliberately introduced dung beetle species for the biological control of livestock dung and dung-breeding pests. Of these, 23 species are known to have become established. For most of these species, sufficient time has elapsed for population expansion to fill the extent of their potential geographic range through both natural and human-assisted dispersal. Consequently, over the last 20 years, extensive efforts have been made to quantify the current distribution of these introduced dung beetles, as well as the seasonal and spatial variation in their activity levels. Much of these data and their associated metadata have remained unpublished, and they have not previously been synthesized into a cohesive dataset. Here, we collate and report data from the three largest dung beetle monitoring projects from 2001 to 2022. Together, these projects encompass data collected from across Australia, and include records for all 23 species of established dung beetles introduced for biocontrol purposes. In total, these data include 22,718 presence records and 213,538 absence records collected during 10,272 sampling events at 546 locations. Most presence records (97%) include abundance data. In total, 1,752,807 dung beetles were identified as part of these data. The distributional occurrence and abundance data can be used to explore questions such as factors influencing dung beetle species distributions, dung beetle biocontrol, and insect-mediated ecosystem services. These data are provided under a CC-BY-NC 4.0 license and users are encouraged to cite this data paper when using the data.
Assuntos
Besouros , Espécies Introduzidas , Besouros/fisiologia , Animais , Austrália , Fatores de Tempo , Distribuição Animal , Dinâmica Populacional , Densidade DemográficaRESUMO
Adult intestinal toxemia botulism (ITB) is a rare illness that can be fatal if not recognized. ITB can occur when botulinum neurotoxin-producing clostridia colonize the intestine. Underlying intestinal abnormalities associated with dysbiosis are likely a prerequisite for colonization. Dysbiosis seems necessary for spore germination and neurotoxin production. Botulism neurotoxins are the most lethal poisons known and are classified into 7 serotypes: A through G. The clinical presentation consists of cranial nerve abnormalities and descending flaccid paralysis. Prompt recognition and treatment with botulism antitoxin and supportive measures is often successful, but delayed recognition can be fatal. In this study, we present a case of a 40-year-old woman with Crohn's disease who developed ITB. This is the first case in literature to report adult intestinal botulism from Clostridium botulinum producing toxin B and F in the same patient.
RESUMO
The development and survival of cancer cells require adaptive mechanisms to stress. Such adaptations can confer intrinsic vulnerabilities, enabling the selective targeting of cancer cells. Through a pooled in vivo short hairpin RNA (shRNA) screen, we identified the adenosine triphosphatase associated with diverse cellular activities (AAA-ATPase) valosin-containing protein (VCP) as a top stress-related vulnerability in acute myeloid leukemia (AML). We established that AML was the most responsive disease to chemical inhibition of VCP across a panel of 16 cancer types. The sensitivity to VCP inhibition of human AML cell lines, primary patient samples, and syngeneic and xenograft mouse models of AML was validated using VCP-directed shRNAs, overexpression of a dominant-negative VCP mutant, and chemical inhibition. By combining mass spectrometry-based analysis of the VCP interactome and phospho-signaling studies, we determined that VCP is important for ataxia telangiectasia mutated (ATM) kinase activation and subsequent DNA repair through homologous recombination in AML. A second-generation VCP inhibitor, CB-5339, was then developed and characterized. Efficacy and safety of CB-5339 were validated in multiple AML models, including syngeneic and patient-derived xenograft murine models. We further demonstrated that combining DNA-damaging agents, such as anthracyclines, with CB-5339 treatment synergizes to impair leukemic growth in an MLL-AF9-driven AML murine model. These studies support the clinical testing of CB-5339 as a single agent or in combination with standard-of-care DNA-damaging chemotherapy for the treatment of AML.
Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Adenosina Trifosfatases/metabolismo , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Reparo do DNA , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Proteína com ValosinaRESUMO
RUVBL1 and RUVBL2 are ATPases associated with diverse cellular activities (AAAs) that form a complex involved in a variety of cellular processes, including chromatin remodeling and regulation of gene expression. RUVBLs have a strong link to oncogenesis, where overexpression is correlated with tumor growth and poor prognosis in several cancer types. CB-6644, an allosteric small-molecule inhibitor of the ATPase activity of the RUVBL1/2 complex, interacts specifically with RUVBL1/2 in cancer cells, leading to cell death. Importantly, drug-acquired-resistant cell clones have amino acid mutations in either RUVBL1 or RUVBL2, suggesting that cell killing is an on-target consequence of RUVBL1/2 engagement. In xenograft models of acute myeloid leukemia and multiple myeloma, CB-6644 significantly reduced tumor growth without obvious toxicity. This work demonstrates the therapeutic potential of targeting RUVBLs in the treatment of cancer and establishes a chemical entity for probing the many facets of RUVBL biology.
Assuntos
ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , Antineoplásicos/farmacologia , Azepinas/farmacologia , Benzamidas/farmacologia , Proteínas de Transporte/antagonistas & inibidores , DNA Helicases/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Células HCT116 , Humanos , Mutação , Ligação ProteicaRESUMO
Kar3, a Saccharomyces cerevisiae Kinesin-14, is essential for karyogamy and meiosis I but also has specific functions during vegetative growth. For its various roles, Kar3 forms a heterodimer with either Cik1 or Vik1, both of which are noncatalytic polypeptides. Here, we present the first biochemical characterization of Kar3Cik1, the kinesin motor that is essential for karyogamy. Kar3Cik1 depolymerizes microtubules from the plus end and promotes robust minus-end-directed microtubule gliding. Immunolocalization studies show that Kar3Cik1 binds preferentially to one end of the microtubule, whereas the Kar3 motor domain, in the absence of Cik1, exhibits significantly higher microtubule lattice binding. Kar3Cik1-promoted microtubule depolymerization requires ATP turnover, and the kinetics fit a single exponential function. The disassembly mechanism is not microtubule catastrophe like that induced by the MCAK Kinesin-13s. Soluble tubulin does not activate the ATPase activity of Kar3Cik1, and there is no evidence of Kar3Cik1(.)tubulin complex formation as observed for MCAK. These results reveal a novel mechanism to regulate microtubule depolymerization. We propose that Cik1 targets Kar3 to the microtubule plus end. Kar3Cik1 then uses its minus-end-directed force to depolymerize microtubules from the plus end, with each tubulin-subunit release event tightly coupled to one ATP turnover.
Assuntos
Núcleo Celular/fisiologia , Cinesinas/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Cromatografia em Gel , Primers do DNA , Plasmídeos/genética , Saccharomyces cerevisiaeRESUMO
Inhibition of the AAA ATPase, p97, was recently shown to be a novel method for targeting the ubiquitin proteasome system, and CB-5083, a first-in-class inhibitor of p97, has demonstrated broad antitumor activity in a range of both hematologic and solid tumor models. Here, we show that CB-5083 has robust activity against multiple myeloma cell lines and a number of in vivo multiple myeloma models. Treatment with CB-5083 is associated with accumulation of ubiquitinated proteins, induction of the unfolded protein response, and apoptosis. CB-5083 decreases viability in multiple myeloma cell lines and patient-derived multiple myeloma cells, including those with background proteasome inhibitor (PI) resistance. CB-5083 has a unique mechanism of action that combines well with PIs, which is likely owing to the p97-dependent retro-translocation of the transcription factor, Nrf1, which transcribes proteasome subunit genes following exposure to a PI. In vivo studies using clinically relevant multiple myeloma models demonstrate that single-agent CB-5083 inhibits tumor growth and combines well with multiple myeloma standard-of-care agents. Our preclinical data demonstrate the efficacy of CB-5083 in several multiple myeloma disease models and provide the rationale for clinical evaluation as monotherapy and in combination in multiple myeloma. Mol Cancer Ther; 16(11); 2375-86. ©2017 AACR.
Assuntos
Adenosina Trifosfatases/genética , Indóis/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Proteínas Nucleares/genética , Fator 1 Nuclear Respiratório/genética , Inibidores de Proteassoma/administração & dosagem , Pirimidinas/administração & dosagem , Adenosina Trifosfatases/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteínas Nucleares/antagonistas & inibidores , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Ubiquitina/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The AAA-ATPase p97 plays vital roles in mechanisms of protein homeostasis, including ubiquitin-proteasome system (UPS) mediated protein degradation, endoplasmic reticulum-associated degradation (ERAD), and autophagy. Herein we describe our lead optimization efforts focused on in vitro potency, ADME, and pharmaceutical properties that led to the discovery of a potent, ATP-competitive, D2-selective, and orally bioavailable p97 inhibitor 71, CB-5083. Treatment of tumor cells with 71 leads to significant accumulation of markers associated with inhibition of UPS and ERAD functions, which induces irresolvable proteotoxic stress and cell death. In tumor bearing mice, oral administration of 71 causes rapid accumulation of markers of the unfolded protein response (UPR) and subsequently induces apoptosis leading to sustained antitumor activity in in vivo xenograft models of both solid and hematological tumors. 71 has been taken into phase 1 clinical trials in patients with multiple myeloma and solid tumors.
Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antineoplásicos/química , Indóis/química , Proteínas Nucleares/antagonistas & inibidores , Pirimidinas/química , Administração Oral , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose , Disponibilidade Biológica , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Xenoenxertos , Humanos , Indóis/farmacocinética , Indóis/farmacologia , Camundongos Nus , Simulação de Acoplamento Molecular , Transplante de Neoplasias , Complexo de Endopeptidases do Proteassoma/metabolismo , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Ubiquitina/metabolismo , Resposta a Proteínas não DobradasRESUMO
p97 is a AAA-ATPase with multiple cellular functions, one of which is critical regulation of protein homeostasis pathways. We describe the characterization of CB-5083, a potent, selective, and orally bioavailable inhibitor of p97. Treatment of tumor cells with CB-5083 leads to accumulation of poly-ubiquitinated proteins, retention of endoplasmic reticulum-associated degradation (ERAD) substrates, and generation of irresolvable proteotoxic stress, leading to activation of the apoptotic arm of the unfolded protein response. In xenograft models, CB-5083 causes modulation of key p97-related pathways, induces apoptosis, and has antitumor activity in a broad range of both hematological and solid tumor models. Molecular determinants of CB-5083 activity include expression of genes in the ERAD pathway, providing a potential strategy for patient selection.
Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Homeostase/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Indóis/química , Indóis/farmacologia , Células K562 , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ubiquitinadas/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Neoplastic cells are often characterized by specific morphological abnormalities of the nuclear envelope (NE), which have been used for cancer diagnosis for more than a century. The NE is a double phospholipid bilayer that encapsulates the nuclear genome, regulates all nuclear trafficking of RNAs and proteins and prevents the passive diffusion of macromolecules between the nucleoplasm and the cytoplasm. Whether there is a consequence to the proper functioning of the cell and loss of structural integrity of the nucleus remains unclear. Using live cell imaging, we characterize a phenomenon wherein nuclei of several proliferating human cancer cell lines become temporarily ruptured during interphase. Strikingly, NE rupturing was associated with the mislocalization of nucleoplasmic and cytoplasmic proteins and, in the most extreme cases, the entrapment of cytoplasmic organelles in the nuclear interior. In addition, we observed the formation of micronuclei-like structures during interphase and the movement of chromatin out of the nuclear space. The frequency of these NE rupturing events was higher in cells in which the nuclear lamina, a network of intermediate filaments providing mechanical support to the NE, was not properly formed. Our data uncover the existence of a NE instability that has the potential to change the genomic landscape of cancer cells.
Assuntos
Interfase , Neoplasias/patologia , Membrana Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Proliferação de Células , Citoplasma/metabolismo , Técnicas de Silenciamento de Genes , Instabilidade Genômica , Humanos , Laminas/deficiência , Laminas/genética , Laminas/metabolismo , Neoplasias/metabolismo , Sinais de Localização Nuclear/metabolismo , Permeabilidade , Transdução de Sinais , Fatores de TempoRESUMO
Oncogenic mutations in the mitogen activated protein kinase (MAPK) pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2). We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.