Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diabetes ; 51(5): 1493-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11978647

RESUMO

Lipolysis is an important process determining fuel metabolism, and insulin regulates this process in adipose tissue. The aim of this study was to investigate the long-term effects of insulin, an insulin enhancer (rosiglitazone [RSG]), and insulin in combination with RSG on the regulation of lipolysis and lipogenesis in human abdominal subcutaneous fat. Lipolysis and lipogenesis were assessed by protein expression studies of hormone-sensitive lipase (HSL) (84 kDa) and lipoprotein lipase (LPL) (56 kDa), respectively. In addition, lipolytic rate was assessed by glycerol release assay and tumor necrosis factor (TNF)-alpha release measured by enzyme-linked immunosorbent assay (n = 12). In subcutaneous adipocytes, increasing insulin doses stimulated LPL expression, with maximal stimulation at 100 nmol/l insulin (control, 1.0 +/- 0.0 [mean +/- SE, protein expression relative to control]; 1 nmol/l insulin, 0.87 +/- 0.13; 100 nmol/l insulin, 1.68 +/- 0.19; P < 0.001). In contrast, insulin at the 100 nmol/l dose reduced the expression of HSL (100 nmol/l insulin, 0.49 +/- 0.05; P < 0.05), while no significant reduction was observed at other doses. Higher doses of insulin stimulated both HSL (1,000 nmol/l insulin, 1.4 +/- 0.07; P < 0.01) and LPL (control 1.00 +/- 0.0; 1,000 nmol/l insulin, 2.66 +/- 0.27; P < 0.01) protein expression. Cotreatment with RSG induced an increased dose response to insulin for LPL and HSL (P < 0.05); RSG alone also increased LPL and HSL expression (P < 0.05). Insulin stimulated TNF-alpha secretion in a dose-dependent manner (P < 0.01); the addition of RSG (10(-8) mol/l) reduced TNF-alpha secretion (P < 0.05). In summary, chronic treatment of human adipocytes with insulin stimulates lipolysis and LPL protein expression. The addition of RSG reduced the lipolytic rate and TNF-alpha secretion. The increase in lipolysis is not explained by changes in HSL expression. These data, therefore, may explain in part why hyperinsulinemia coexists with increased circulating nonesterified free fatty acids and increased adiposity in obese and/or type 2 diabetic patients.


Assuntos
Tecido Adiposo/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Lipólise/efeitos dos fármacos , Tiazóis/farmacologia , Tiazolidinedionas , Adipócitos/efeitos dos fármacos , Adipócitos/enzimologia , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Adulto , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Glicerol/metabolismo , Humanos , Técnicas In Vitro , Lipase Lipoproteica/biossíntese , Lipase Lipoproteica/metabolismo , Pessoa de Meia-Idade , Norepinefrina/farmacologia , Rosiglitazona , Esterol Esterase/biossíntese , Esterol Esterase/metabolismo , Simpatomiméticos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
2.
J Clin Endocrinol Metab ; 87(3): 1327-36, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11889205

RESUMO

The distinct gender-specific patterns of fat distribution in men and women (android and gynoid) suggest a role for sex steroids. In keeping with these observations, it has been suggested that estrogens can promote preadipocyte cell proliferation and/or differentiation. The enzyme aromatase P450 is responsible for the conversion of androgen precursor steroids to estrogens and may, therefore, have a role in regulating adipose tissue mass and its distribution. We have investigated the glucocorticoid regulation of aromatase expression in human adipose tissue, specifically to define any site- and gender-specific differences. Abdominal subcutaneous (Sc) and omental (Om) adipose tissue was obtained from male and female patients undergoing elective surgery. After collagenase digestion, preadipocytes were cultured in serum-free medium, for 6-10 d, until confluent with either cortisol (10(-6) M, 10(-7) M) or insulin (500 nM) or a combination of both treatments. Adipocytes were studied in suspension cultures. Aromatase activity was assessed using tritiated [1 beta-(3)H]-androstenedione as substrate. In Sc preadipocytes, basal aromatase activity increased in females from 11.5 +/- 1.4 (mean plus minus SEM) to 28.0 +/- 1.8 pmol/mg x h (n = 17, P < 0.05) with 10(-6) M cortisol. By contrast, in males, aromatase activity was inhibited by 10(-6) M cortisol (19.4 +/- 2.4 pmol/mg x h vs. 7.5 +/- 1.3, n = 9, P < 0.01; men vs. women, P < 0.005). These data were endorsed through Western blot analysis using an in-house antihuman aromatase antibody, which recognized a specific 55-kDa species. Aromatase activity was less at Om sites in preadipocytes, increasing in females from 1.1 +/- 0.2 to 3.2 +/- 0.7 pmol/mg x h with 10(-6) M cortisol (P < 0.05) and in males from 2.6 +/- 0.1 pmol/mg x h to 7.8 +/- 0.3 pmol/mg x h after cortisol (men vs. women, P < 0.001). Cortisol-induced aromatase activity in Om adipocytes from postmenopausal females was higher than that in premenopausal females (P < 0.001). Insulin had no independent effect on aromatase expression, but coincubation of preadipocytes with cortisol and insulin eliminated both gender- and site-specific differences. In conclusion, in women, but not men, cortisol increased aromatase activity at Sc sites, and this may facilitate predilection for Sc adiposity in females. The observed site-, gender-, and menopausal-specific differences in the glucocorticoid regulation of this enzyme may contribute to the gender- and menopausal-specific patterns of fat distribution.


Assuntos
Tecido Adiposo/metabolismo , Aromatase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glucocorticoides/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pós-Menopausa/metabolismo , Pré-Menopausa/metabolismo , Caracteres Sexuais , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa