RESUMO
Species introductions often bring together genetically divergent source populations, resulting in genetic admixture. This geographic reshuffling of diversity has the potential to generate favourable new genetic combinations, facilitating the establishment and invasive spread of introduced populations. Observational support for the superior performance of admixed introductions has been mixed, however, and the broad importance of admixture to invasion questioned. Under most underlying mechanisms, admixture's benefits should be expected to increase with greater divergence among and lower genetic diversity within source populations, though these effects have not been quantified in invaders. We experimentally crossed source populations differing in divergence in the invasive plant Centaurea solstitialis. Crosses resulted in many positive (heterotic) interactions, but fitness benefits declined and were ultimately negative at high source divergence, with patterns suggesting cytonuclear epistasis. We explored the literature to assess whether such negative epistatic interactions might be impeding admixture at high source population divergence. Admixed introductions reported for plants came from sources with a wide range of genetic variation, but were disproportionately absent where there was high genetic divergence among native populations. We conclude that while admixture is common in species introductions and often happens under conditions expected to be beneficial to invaders, these conditions may be constrained by predictable negative genetic interactions, potentially explaining conflicting evidence for admixture's benefits to invasion.
Assuntos
Centaurea/genética , Aptidão Genética/genética , Variação Genética , Genética Populacional , Deriva Genética , Genótipo , Vigor Híbrido , Espécies IntroduzidasRESUMO
The influence of genetic variation on invasion success has captivated researchers since the start of the field of invasion genetics 50 years ago. We review the history of work on this question and conclude that genetic variation-as surveyed with molecular markers-appears to shape invasion rarely. Instead, there is a significant disconnect between marker assays and ecologically relevant genetic variation in introductions. We argue that the potential for adaptation to facilitate invasion will be shaped by the details of genotypes affecting phenotypes, and we highlight three areas in which we see opportunities to make powerful new insights. (i) The genetic architecture of adaptive variation. Traits shaped by large-effect alleles may be strongly impacted by founder events yet more likely to respond to selection when genetic drift is strong. Large-effect loci may be especially relevant for traits involved in biotic interactions. (ii) Cryptic genetic variation exposed during invasion. Introductions have strong potential to uncover masked variation due to alterations in genetic and ecological environments. (iii) Genetic interactions during admixture of multiple source populations. As divergence among sources increases, positive followed by increasingly negative effects of admixture should be expected. Although generally hypothesized to be beneficial during invasion, admixture is most often reported among sources of intermediate divergence, supporting the possibility that incompatibilities among divergent source populations might be limiting their introgression. Finally, we note that these details of invasion genetics can be coupled with comparative demographic analyses to link genetic changes to the evolution of invasiveness itself.
Assuntos
Variação Genética , Genética Populacional , Espécies Introduzidas , Adaptação Biológica/genética , Evolução Biológica , Efeito Fundador , Deriva Genética , Genótipo , MutaçãoRESUMO
Many animals are active only during a particular time (e.g., day vs. night), a partitioning that may have important consequences for species coexistence. An open question is the extent to which this diel activity niche is evolutionarily conserved or labile. Here, we analyze diel activity data across a phylogeny of 1914 tetrapod species. We find strong phylogenetic signal, showing that closely related species tend to share similar activity patterns. Ancestral reconstructions show that nocturnality was the most likely ancestral diel activity pattern for tetrapods and many major clades within it (e.g., amphibians, mammals). Remarkably, nocturnal activity appears to have been maintained continuously in some lineages for â¼350 million years. Thus, we show that traits involved in local-scale resource partitioning can be conserved over strikingly deep evolutionary time scales. We also demonstrate a potentially important (but often overlooked) metric of niche conservatism. Finally, we show that diurnal lineages appear to have faster speciation and diversification rates than nocturnal lineages, which may explain why there are presently more diurnal tetrapod species even though diurnality appears to have evolved more recently. Overall, our results may have implications for studies of community ecology, species richness, and the evolution of diet and communication systems.
Assuntos
Evolução Biológica , Ecologia , Ecossistema , Vertebrados , Comunicação Animal , Animais , Dieta , Mamíferos , Fotoperíodo , FilogeniaRESUMO
An important question in ecology is how mechanistic processes occurring among individuals drive large-scale patterns of community formation and change. Here we show that in two species of bluebirds, cycles of replacement of one by the other emerge as an indirect consequence of maternal influence on offspring behavior in response to local resource availability. Sampling across broad temporal and spatial scales, we found that western bluebirds, the more competitive species, bias the birth order of offspring by sex in a way that influences offspring aggression and dispersal, setting the stage for rapid increases in population density that ultimately result in the replacement of their sister species. Our results provide insight into how predictable community dynamics can occur despite the contingency of local behavioral interactions.