Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 630(2): 165-75, 1980 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-6248128

RESUMO

The characteristics and kinetics of calcium uptake activity were studied in isolated hepatic microsomes. The sustained accumulation of calcium was ATP- and oxalate-dependent. Glucagon increased microsomal Ca2+ uptake upon either in vivo injection, or in vitro perfusion of the hormone in the liver. In contrast, the effect of insulin depended on the route of administration. Calcium accumulation by subsequently isolated hepatic microsomes increased when insulin was injected intraperitoneally whereas it decreased when the hormone was perfused directly into the liver. These effects of glucagon and insulin were dose dependent. When insulin was added to the perfusate prior to the addition of glucagon, insulin blocked the glucagon-stimulated increase in microsomal Ca2+ uptake. Cyclic AMP mimicked the effect of glucagon on microsomal Ca2+ accumulation when the cyclic nucleotide was perfused into the liver. The effects of glucagon and insulin on the kinetics of hepatic microsomal Ca2+ uptake were investigated. In microsomes isolated from perfused rat livers treated with glucagon the V of the uptake was significantly increased over the control values (12.2 vs. 8.6 nmol Ca2+ per min per mg protein, P less than 0.02). In contrast, the addition of insulin to the perfusate significantly decreased the V of Ca2+ uptake by subsequently isolated microsomes (6.8 vs. 8.3 nmol Ca2+ per min per mg protein, P less than 0.05). However, neither hormone had an effect on the apparent Km for Ca2+ (4.1 +/- 0.5 microM) of the reaction. The effect of these hormones on the activity of Ca2+-stimulated ATPase was also studied. No significant changes in either V or Km for Ca2+ of the enzymatic reaction were detected.


Assuntos
Cálcio/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Animais , AMP Cíclico/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Glucagon/farmacologia , Insulina/farmacologia , Cinética , Masculino , Ratos
3.
Mol Cell Biochem ; 36(3): 177-84, 1981 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-7254203

RESUMO

Previous work by this and other laboratories has shown that glucagon administration stimulates calcium uptake by subsequently isolated hepatic mitochondria. This stimulation of hepatic mitochondrial Ca2+ uptake by in vivo administration of glucagon was further characterized in the present report. Maximal stimulation of mitochondrial Ca2+ accumulation was achieved between 6-10 min after the intravenous injection of glucagon into intact rats. Under control conditions, Ca2+ uptake was inhibited by the presence of Mg2+ in the incubation medium. Glucagon treatment, however, appeared to obliterate the observed inhibition by Mg2+ of mitochondrial Ca2+ uptake. Kinetic experiments revealed the usual sigmoidicity associated with initial velocity curves for mitochondrial calcium uptake. Glucagon treatment did not alter this sigmoidal relationship. Glucagon treatment significantly increased the V max for Ca2+ uptake from 292 +/- 22 to 377 +/- 34 nmoles Ca2+/min per mg protein (n = 8) but did not affect the K 0.5, (6.5-8.6 microM). Since the major kinetic change in mitochondrial Ca2+ uptake evoked by glucagon is an increase in V max, the enhancement mechanism is likely to be an increase either in the number of active transport sites available to Ca2+ or in the rate of Ca2+ carrier movement across the mitochondrial membranes.


Assuntos
Cálcio/metabolismo , Glucagon/farmacologia , Mitocôndrias Hepáticas/metabolismo , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Cinética , Magnésio/farmacologia , Cloreto de Magnésio , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa