Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2319582121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483998

RESUMO

The presence of viruses that spread to both plant and fungal populations in nature has posed intriguingly scientific question. We found a negative-strand RNA virus related to members of the family Phenuiviridae, named Valsa mali negative-strand RNA virus 1 (VmNSRV1), which induced strong hypovirulence and was prevalent in a population of the phytopathogenic fungus of apple Valsa canker (Valsa mali) infecting apple orchards in the Shaanxi Province of China. Intriguingly, VmNSRV1 encodes a protein with a viral cell-to-cell movement function in plant tissue. Mechanical leaf inoculation showed that VmNSRV1 could systemically infect plants. Moreover, VmNSRV1 was detected in 24 out of 139 apple trees tested in orchards in Shaanxi Province. Fungal inoculation experiments showed that VmNSRV1 could be bidirectionally transmitted between apple plants and V. mali, and VmNSRV1 infection in plants reduced the development of fungal lesions on leaves. Additionally, the nucleocapsid protein encoded by VmNSRV1 is associated with and rearranged lipid droplets in both fungal and plant cells. VmNSRV1 represents a virus that has adapted and spread to both plant and fungal hosts and shuttles between these two organisms in nature (phyto-mycovirus) and is potential to be utilized for the biocontrol method against plant fungal diseases. This finding presents further insights into the virus evolution and adaptation encompassing both plant and fungal hosts.


Assuntos
Ascomicetos , Micovírus , Malus , Micoses , Vírus de RNA , Ascomicetos/genética , Vírus de RNA/genética , Doenças das Plantas/microbiologia , Malus/metabolismo
2.
PLoS Pathog ; 19(10): e1011726, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37883353

RESUMO

Fungi are highly widespread and commonly colonize multicellular organisms that live in natural environments. Notably, studies on viruses infecting plant-associated fungi have revealed the interesting phenomenon of the cross-kingdom transmission of viruses and viroids from plants to fungi. This implies that fungi, in addition to absorbing water, nutrients, and other molecules from the host, can acquire intracellular parasites that reside in the host. These findings further suggest that fungi can serve as suitable alternative hosts for certain plant viruses and viroids. Given the frequent coinfection of fungi and viruses in humans/animals, the question of whether fungi can also acquire animal viruses and serve as their hosts is very intriguing. In fact, the transmission of viruses from insects to fungi has been observed. Furthermore, the common release of animal viruses into the extracellular space (viral shedding) could potentially facilitate their acquisition by fungi. Investigations of the cross-infection of animal viruses in fungi may provide new insights into the epidemiology of viral diseases in humans and animals.


Assuntos
Vírus de Insetos , Vírus de Plantas , Viroides , Animais , Humanos , Doenças das Plantas/microbiologia , Fungos , Plantas
3.
Arch Virol ; 169(8): 166, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995418

RESUMO

The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.


Assuntos
Cordyceps , Genoma Viral , Filogenia , RNA Viral , Cordyceps/genética , RNA Viral/genética , Micovírus/classificação , Micovírus/genética , Micovírus/isolamento & purificação , Proteínas Virais/genética , Vírus de RNA de Sentido Negativo/genética , Vírus de RNA de Sentido Negativo/classificação , RNA Polimerase Dependente de RNA/genética , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Sequência de Aminoácidos , Fases de Leitura Aberta
4.
Arch Virol ; 168(8): 214, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523067

RESUMO

Viruses belonging to the family Dicistroviridae have a monopartite positive-sense single-stranded RNA genome and infect a variety of arthropods. Using high-throughput sequencing, we detected a novel dicistro-like virus, tentatively named "tomato root-associated dicistro-like virus" (TRaDLV), in the roots of tomato plants showing yellow mosaic symptoms on the leaves. The diseased tomato plants were coinfected with multiple plant viruses, and TRaDLV was present in the roots but not in the leaves. The genome of TRaDLV is 8726 nucleotides in length, excluding the poly(A) tail, and contains two open reading frames (ORFs) separated by an intergenic region (IGR). The TRaDLV genome showed characteristics similar to those of dicistroviruses, including the presence of a 3C-like protease domain, repeated amino acid sequences representing multiple copies of viral genome-linked protein (VPg)-like sequences in the ORF1 polyprotein, and a series of stem-loop structures resembling an internal ribosome entry site in the IGR. Phylogenetic analysis revealed that TRaDLV clustered with unclassified dicistro-like viruses from invertebrates or identified in samples of plant-derived material. These findings indicate the existence of a novel dicistro-like virus that may associate with plant roots or a root-inhabiting organism.


Assuntos
Dicistroviridae , Solanum lycopersicum , RNA Viral/genética , RNA Viral/química , Filogenia , Sequência de Aminoácidos , Genoma Viral/genética , Fases de Leitura Aberta
5.
Arch Virol ; 168(9): 239, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661219

RESUMO

In this study, we report the complete genome sequence of a novel toti-like virus, tentatively named "Rhizopus stolonifer double-stranded RNA virus 1" (RsDSV1), identified from a phytopathogenic fungal agent of apple fruit rot disease, Rhizopus stolonifer strain A2-1. RsDSV1 has a double-stranded RNA genome. The complete RsDSV1 genome is 5178 nucleotides (nt) in length and contains two open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis based on RdRp and CP amino acid sequences revealed that RsDSV1 is closely related to unclassified members of the family Totiviridae. In stress-inducing Vogel's minimal and sodium dodecyl sulfate-containing media, hyphal growth of A2-1 was suppressed, but the accumulation of RsDSV1 RNA increased, indicating that stresses promote RsDSV1 replication. To our knowledge, this is the first report of a mycovirus found in R. stolonifer.


Assuntos
Fungos , RNA de Cadeia Dupla , RNA de Cadeia Dupla/genética , Filogenia , Vírus de RNA de Cadeia Dupla , RNA Polimerase Dependente de RNA/genética
6.
Proc Natl Acad Sci U S A ; 117(7): 3779-3788, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015104

RESUMO

Plants and fungi are closely associated through parasitic or symbiotic relationships in which bidirectional exchanges of cellular contents occur. Recently, a plant virus was shown to be transmitted from a plant to a fungus, but it is unknown whether fungal viruses can also cross host barriers and spread to plants. In this study, we investigated the infectivity of Cryphonectria hypovirus 1 (CHV1, family Hypoviridae), a capsidless, positive-sense (+), single-stranded RNA (ssRNA) fungal virus in a model plant, Nicotiana tabacum CHV1 replicated in mechanically inoculated leaves but did not spread systemically, but coinoculation with an unrelated plant (+)ssRNA virus, tobacco mosaic virus (TMV, family Virgaviridae), or other plant RNA viruses, enabled CHV1 to systemically infect the plant. Likewise, CHV1 systemically infected transgenic plants expressing the TMV movement protein, and coinfection with TMV further enhanced CHV1 accumulation in these plants. Conversely, CHV1 infection increased TMV accumulation when TMV was introduced into a plant pathogenic fungus, Fusarium graminearum In the in planta F. graminearum inoculation experiment, we demonstrated that TMV infection of either the plant or the fungus enabled the horizontal transfer of CHV1 from the fungus to the plant, whereas CHV1 infection enhanced fungal acquisition of TMV. Our results demonstrate two-way facilitative interactions between the plant and fungal viruses that promote cross-kingdom virus infections and suggest the presence of plant-fungal-mediated routes for dissemination of fungal and plant viruses in nature.


Assuntos
Micovírus/fisiologia , Fusarium/virologia , Nicotiana/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Vírus do Mosaico do Tabaco/fisiologia , Fusarium/fisiologia
7.
Proc Natl Acad Sci U S A ; 116(6): 2274-2281, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674672

RESUMO

In antiviral RNA interference (RNAi), Dicer plays a primary role in processing double-stranded RNA (dsRNA) molecules into small-interfering RNAs (siRNAs) that guide Argonaute effectors to posttranscriptional suppression of target viral genes. Here, we show a distinct role for Dicer in the siRNA-independent transcriptional induction of certain host genes upon viral infection in a filamentous fungus. Previous studies have shown that the two key players, dicer-like 2 (dcl2) and argonaute-like 2 (agl2), of antiviral RNAi in a phytopathogenic ascomycete, Cryphonectria parasitica, are highly transcriptionally induced upon infection with certain RNA mycoviruses, including the positive-stranded RNA hypovirus mutant lacking the RNAi suppressor (Cryphonectria hypovirus 1-Δp69, CHV1-Δp69). This induction is regulated by the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, a well-known transcriptional coactivator. The present study shows that diverse host genes, in addition to dcl2 and agl2, were up-regulated more than 10-fold by SAGA upon infection with CHV1-Δp69. Interestingly, DCL2, but not AGL2, was essential for SAGA-mediated global gene up-regulation. Moreover, deletion of certain virus-induced genes enhanced a CHV1-Δp69 symptom (growth rate) but not its accumulation. Constitutive, modest levels of dcl2 expression drastically reduced viral siRNA accumulation but were sufficient for full-scale up-regulation of host genes, suggesting that high induction of dcl2 and siRNA production are not essential for the transcriptional up-regulation function of DCL2. These data clearly demonstrate the dual functionality of DCL2: as a dsRNA-specific nuclease in posttranscriptional antiviral RNA silencing and as a key player in SAGA-mediated host gene induction, which independently represses viral replication and alleviates virus-induced symptom expression.


Assuntos
Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Processamento Pós-Transcricional do RNA , Ribonuclease III/genética , Transcrição Gênica , Viroses/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/virologia , Resistência à Doença/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Mutação , Fenótipo , Ribonuclease III/metabolismo , Viroses/virologia , Vírus
8.
Proc Natl Acad Sci U S A ; 116(26): 13042-13050, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31182602

RESUMO

Viroids are pathogenic agents that have a small, circular noncoding RNA genome. They have been found only in plant species; therefore, their infectivity and pathogenicity in other organisms remain largely unexplored. In this study, we investigate whether plant viroids can replicate and induce symptoms in filamentous fungi. Seven plant viroids representing viroid groups that replicate in either the nucleus or chloroplast of plant cells were inoculated to three plant pathogenic fungi, Cryphonectria parasitica, Valsa mali, and Fusarium graminearum By transfection of fungal spheroplasts with viroid RNA transcripts, each of the three, hop stunt viroid (HSVd), iresine 1 viroid, and avocado sunblotch viroid, can stably replicate in at least one of those fungi. The viroids are horizontally transmitted through hyphal anastomosis and vertically through conidia. HSVd infection severely debilitates the growth of V. mali but not that of the other two fungi, while in F. graminearum and C. parasitica, with deletion of dicer-like genes, the primary components of the RNA-silencing pathway, HSVd accumulation increases. We further demonstrate that HSVd can be bidirectionally transferred between F. graminearum and plants during infection. The viroids also efficiently infect fungi and induce disease symptoms when the viroid RNAs are exogenously applied to the fungal mycelia. These findings enhance our understanding of viroid replication, host range, and pathogenicity, and of their potential spread to other organisms in nature.


Assuntos
Transmissão de Doença Infecciosa , Fungos/virologia , Doenças das Plantas/microbiologia , Vírus de Plantas/patogenicidade , Viroides/patogenicidade , Fungos/crescimento & desenvolvimento , Fungos/patogenicidade , Micélio/virologia , RNA Viral/metabolismo , Viroides/fisiologia , Replicação Viral
9.
J Integr Plant Biol ; 64(8): 1631-1645, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713231

RESUMO

Autophagy is an intracellular degradation mechanism involved in antiviral defense, but the strategies employed by plant viruses to counteract autophagy-related defense remain unknown for the majority of the viruses. Herein, we describe how the Chinese wheat mosaic virus (CWMV, genus Furovirus) interferes with autophagy and enhances its infection in Nicotiana benthamiana. Yeast two-hybrid screening and in vivo/in vitro assays revealed that the 19 kDa coat protein (CP19K) of CWMV interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs), negative regulators of autophagy, which bind autophagy-related protein 3 (ATG3), a key factor in autophagy. CP19K also directly interacts with ATG3, possibly leading to the formation of a CP19K-GAPC-ATG3 complex. CP19K-GAPC interaction appeared to intensify CP19K-ATG3 binding. Moreover, CP19K expression upregulated GAPC gene transcripts and reduced autophagic activities. Accordingly, the silencing of GAPC genes in transgenic N. benthamiana reduced CWMV accumulation, whereas CP19K overexpression enhanced it. Overall, our results suggest that CWMV CP19K interferes with autophagy through the promotion and utilization of the GAPC role as a negative regulator of autophagy.


Assuntos
Vírus de Plantas , Viroses , Autofagia/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Doenças das Plantas , Nicotiana/genética , Nicotiana/metabolismo
10.
Arch Virol ; 166(12): 3461-3465, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34581864

RESUMO

Here, we describe the full-length genome sequence of a novel ourmia-like mycovirus, tentatively named "Botryosphaeria dothidea ourmia-like virus 1" (BdOLV1), isolated from the phytopathogenic fungus Botryosphaeria dothidea strain 8A, associated with apple ring rot in Shanxi province, China. The complete BdOLV1 genome is comprised of a 2797-nucleotide positive-sense (+) single-stranded RNA (ssRNA) with a single open reading frame (ORF). The ORF putatively encodes a 642-amino-acid polypeptide with conserved RNA-dependent RNA polymerase (RdRp) motifs related to those of viruses of the family Botourmiaviridae. Phylogenetic analysis based on RdRp amino acid sequences showed that BdOLV1 is grouped with unclassified oomycete-infecting viruses closely related to members of the genus Botoulivirus in the family Botourmiaviridae. This is the first report of a novel (+)ssRNA virus in B. dothidea related to members of the genus Botoulivirus in the family Botourmiaviridae.


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Ascomicetos/genética , Micovírus/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Vírus de RNA/genética , RNA Viral/genética , Proteínas Virais/genética
11.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626674

RESUMO

Horizontal transfer of genetic materials between virus and host has been frequently identified. Three rice planthoppers, Laodelphax striatellus, Nilaparvata lugens, and Sogatella furcifera, are agriculturally important insects because they are destructive rice pests and also the vector of a number of phytopathogenic viruses. In this study, we discovered that a small region (∼300 nucleotides [nt]) of the genome of invertebrate iridescent virus 6 (IIV-6; genus Iridovirus, family Iridoviridae), a giant DNA virus that infects invertebrates but is not known to infect planthoppers, is highly homologous to the sequences present in high copy numbers in these three planthopper genomes. These sequences are related to the short interspersed nuclear elements (SINEs), a class of non-long terminal repeat (LTR) retrotransposons (retroposons), suggesting a horizontal transfer event of a transposable element from the rice planthopper genome to the IIV-6 genome. In addition, a number of planthopper transcripts mapped to these rice planthopper SINE-like sequences (RPSlSs) were identified and appear to be transcriptionally regulated along the different developmental stages of planthoppers. Small RNAs derived from these RPSlSs are predominantly 26 to 28 nt long, which is a typical characteristic of PIWI-interacting RNAs. Phylogenetic analysis suggests that IIV-6 acquires a SINE-like retrotransposon from S. furcifera after the evolutionary divergence of the three rice planthoppers. This study provides further examples of the horizontal transfer of an insect transposon to virus and suggests the association of rice planthoppers with iridoviruses in the past or present.IMPORTANCE This study provides an example of the horizontal transfer event from a rice planthopper genome to an IIV-6 genome. A small region of the IIV-6 genome (∼300 nt) is highly homologous to the sequences presented in high copy numbers of three rice planthopper genomes that are related to the SINEs, a class of retroposons. The expression of these planthopper SINE-like sequences was confirmed, and corresponding Piwi-interacting RNA-like small RNAs were identified and comprehensively characterized. Phylogenetic analysis suggests that the giant invertebrate iridovirus IIV-6 obtains this SINE-related sequence from Sogatella furcifera through a horizontal transfer event in the past. To the best of our knowledge, this is the first report of a horizontal transfer event between a planthopper and a giant DNA virus and also is the first evidence for the eukaryotic origin of genetic material in iridoviruses.


Assuntos
Vírus de DNA/genética , Vírus de Insetos/genética , Insetos/virologia , Oryza/virologia , Retroelementos/genética , Animais , Evolução Biológica , Hemípteros/virologia , Filogenia , Elementos Nucleotídeos Curtos e Dispersos/genética
12.
Proc Natl Acad Sci U S A ; 114(17): E3499-E3506, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28400515

RESUMO

Pathogen recognition and transcriptional activation of defense-related genes are crucial steps in cellular defense responses. RNA silencing (RNAi) functions as an antiviral defense in eukaryotic organisms. Several RNAi-related genes are known to be transcriptionally up-regulated upon virus infection in some host organisms, but little is known about their induction mechanism. A phytopathogenic ascomycete, Cryphonectria parasitica (chestnut blight fungus), provides a particularly advantageous system to study RNAi activation, because its infection by certain RNA viruses induces the transcription of dicer-like 2 (dcl2) and argonaute-like 2 (agl2), two major RNAi players. To identify cellular factors governing activation of antiviral RNAi in C. parasitica, we developed a screening protocol entailing multiple transformations of the fungus with cDNA of a hypovirus mutant lacking the RNAi suppressor (CHV1-Δp69), a reporter construct with a GFP gene driven by the dcl2 promoter, and a random mutagenic construct. Screening for GFP-negative colonies allowed the identification of sgf73, a component of the SAGA (Spt-Ada-Gcn5 acetyltransferase) complex, a well-known transcriptional coactivator. Knockout of other SAGA components showed that the histone acetyltransferase module regulates transcriptional induction of dcl2 and agl2, whereas histone deubiquitinase mediates regulation of agl2 but not dcl2 Interestingly, full-scale induction of agl2 and dcl2 by CHV1-Δp69 required both DCL2 and AGL2, whereas that by another RNA virus, mycoreovirus 1, required only DCL2, uncovering additional roles for DCL2 and AGL2 in viral recognition and/or RNAi activation. Overall, these results provide insight into the mechanism of RNAi activation.


Assuntos
Ascomicetos , Proteínas de Ciclo Celular , Proteínas Fúngicas , Micovírus , Inativação Gênica , RNA Viral , Proteínas Virais , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/virologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micovírus/genética , Micovírus/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(46): 12267-12272, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087346

RESUMO

The transmission of viral infections between plant and fungal hosts has been suspected to occur, based on phylogenetic and other findings, but has not been directly observed in nature. Here, we report the discovery of a natural infection of the phytopathogenic fungus Rhizoctonia solani by a plant virus, cucumber mosaic virus (CMV). The CMV-infected R. solani strain was obtained from a potato plant growing in Inner Mongolia Province of China, and CMV infection was stable when this fungal strain was cultured in the laboratory. CMV was horizontally transmitted through hyphal anastomosis but not vertically through basidiospores. By inoculation via protoplast transfection with virions, a reference isolate of CMV replicated in R. solani and another phytopathogenic fungus, suggesting that some fungi can serve as alternative hosts to CMV. Importantly, in fungal inoculation experiments under laboratory conditions, R. solani could acquire CMV from an infected plant, as well as transmit the virus to an uninfected plant. This study presents evidence of the transfer of a virus between plant and fungus, and it further expands our understanding of plant-fungus interactions and the spread of plant viruses.


Assuntos
Cucumovirus/fisiologia , Doenças das Plantas/virologia , Rhizoctonia/virologia , Solanum tuberosum/virologia , Cucumovirus/patogenicidade , Hifas/virologia , Doenças das Plantas/microbiologia , Protoplastos/microbiologia , Protoplastos/virologia , Solanum tuberosum/microbiologia , Vírion/patogenicidade , Vírion/fisiologia
15.
Plant J ; 81(5): 781-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25619543

RESUMO

Members of the plant Dicer-like (DCL) protein family are the critical components of the RNA-silencing pathway that mediates innate antiviral defence. The distinct antiviral role of each individual DCL protein has been established with mostly based on observations of aerial parts of plants. Thus, although the roots are closely associated with the life cycle of many plant viruses, little is known about the antiviral activities of DCL proteins in roots. We observed that antiviral silencing strongly inhibits potato virus X (PVX) replication in roots of some susceptible Solanaceae species. Silencing of the DCL4 homolog in Nicotiana benthamiana partially elevated PVX replication levels in roots. In Arabidopsis thaliana, which was originally considered a non-host plant of PVX, high levels of PVX accumulation in inoculated leaves were achieved by inactivation of DCL4, while in the upper leaves and roots, it required the additional inactivation of DCL2. In transgenic A. thaliana carrying the PVX amplicon with a green fluorescent protein (GFP) gene insertion in the chromosome (AMP243 line), absence of DCL4 enabled high levels of PVX-GFP accumulation in various aerial organs but not in the roots, suggesting that DCL4 is critical for intracellular antiviral silencing in shoots but not in roots, where it can be functionally compensated by other DCL proteins. Together, the high level of functional redundancies among DCL proteins may contribute to the potent antiviral activities against PVX replication in roots.


Assuntos
Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Potexvirus/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genes Reporter , Doenças das Plantas/virologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Vírus de Plantas/fisiologia , Plantas Geneticamente Modificadas , Interferência de RNA , Ribonuclease III/genética , Ribonuclease III/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Replicação Viral
16.
Arch Virol ; 160(8): 2099-104, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26025156

RESUMO

Cymbidium chlorotic mosaic virus (CyCMV), isolated from a spring orchid (Cymbidium goeringii), was characterized molecularly. CyCMV isometric virions comprise a single, positive-strand RNA genome of 4,083 nucleotides and 30-kDa coat protein. The virus genome contains five overlapping open reading frames with a genomic organization similar to that of sobemoviruses. BLAST searches and phylogenetic analysis revealed that CyCMV is most closely related to papaya lethal yellowing virus, a proposed dicot-infecting sobemovirus (58.8 % nucleotide sequence identity), but has a relatively distant relationship to monocot-infecting sobemoviruses, with only modest sequence identities. This suggests that CyCMV is a new monocot-infecting member of the floating genus Sobemovirus.


Assuntos
Orchidaceae/virologia , Doenças das Plantas/virologia , Vírus de RNA/isolamento & purificação , Genoma Viral , Japão , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Folhas de Planta/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Proteínas Virais/genética
17.
J Gen Virol ; 95(Pt 3): 712-718, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24323637

RESUMO

In this study, sequences of small RNA (sRNA) libraries derived from the insect vector Laodelphax striatellus were assembled into contigs and used as queries for database searches. A large number of contigs were highly homologous to the genome sequence of an insect dicistrovirus, himetobi P virus (HiPV). Interestingly, HiPV-derived sRNAs had a wide size distribution, and were relatively abundant throughout the 18-30 nt size range with only a slight peak at 22 nt. HiPV sRNAs had a strong bias towards the sense strand, whilst the antisense sRNAs were predominantly 21 and 22 nt. HiPV sRNAs do not have the typical features of PIWI-interacting RNAs, but their 3' ends were preferentially cleaved at UA-rich sequences. Our data suggest that HiPV sRNAs may be derived both from activities of the RNA interference pathway and from cleavage of the viral genome by other host RNases.


Assuntos
Dicistroviridae/genética , Hemípteros/virologia , Insetos Vetores/virologia , Pequeno RNA não Traduzido/genética , RNA Viral/genética , Animais , Sequência de Bases , Dados de Sequência Molecular
18.
J Virol ; 87(13): 7423-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616651

RESUMO

Orchid fleck virus (OFV) has a unique two-segmented negative-sense RNA genome that resembles that of plant nucleorhabdoviruses. In infected plant cells, OFV and nucleorhabdoviruses induce an intranuclear electron-lucent viroplasm that is believed to be the site for virus replication. In this study, we investigated the molecular mechanism by which OFV viroplasms are produced in vivo. Among OFV-encoded proteins, the nucleocapsid protein (N) and the putative phosphoprotein (P) were present in nuclear fractions of OFV-infected Nicotiana benthamiana plants. Transient coexpression of N and P, in the absence of virus infection, was shown to be sufficient for formation of an intranuclear viroplasm-like structure in plant cells. When expressed independently as a fluorescent protein fusion product in uninfected plant cells, N protein accumulated throughout the cell, while P protein accumulated in the nucleus. However, the N protein, when coexpressed with P, was recruited to a subnuclear region to induce a large viroplasm-like focus. Deletion and substitution mutagenesis demonstrated that the P protein contains a nuclear localization signal (NLS). Artificial nuclear targeting of the N-protein mutant was insufficient for formation of viroplasm-like structures in the absence of P. A bimolecular fluorescence complementation assay confirmed interactions between the N and P proteins within subnuclear viroplasm-like foci and interactions of two of the N. benthamiana importin-α homologues with the P protein but not with the N protein. Taken together, our results suggest that viroplasm formation by OFV requires nuclear accumulation of both the N and P proteins, which is mediated by P-NLS, unlike nucleorhabdovirus viroplasm utilizing the NLS on protein N.


Assuntos
Corpos de Inclusão Viral/metabolismo , Nicotiana/virologia , Proteínas do Nucleocapsídeo/metabolismo , Fosfoproteínas/metabolismo , Vírus de RNA/genética , Proteínas de Bactérias , Western Blotting , Eletroforese em Gel de Poliacrilamida , Teste de Complementação Genética , Imuno-Histoquímica , Indóis , Proteínas Luminescentes , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Mutagênese , Sinais de Localização Nuclear/genética , Proteínas do Nucleocapsídeo/genética , Fosfoproteínas/genética , Vírus de RNA/metabolismo , Vírus de RNA/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido , alfa Carioferinas/metabolismo
19.
Mol Plant Microbe Interact ; 26(10): 1165-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23777430

RESUMO

Some viruses only infect plants at cool temperatures but the molecular mechanism underlying this low-temperature dependence remains unclear. Chinese wheat mosaic virus (CWMV, genus Furovirus) was able to infect wheat and Nicotiana benthamiana plants at 16 but not at 24°C. When CWMV-infected plants were transferred to 24°C for 2 weeks, the newly emerged leaves and roots became virus free. Co-infection with Potato virus Y rescued CWMV accumulation in N. benthamiana plants after a temperature shift to 24°C. In transgenic N. benthamiana plants silenced for the N. benthamiana RNA-dependent RNA polymerase 6 (NbRDR6), CWMV was able to accumulate in roots but not in leaves after a temperature shift to 24°C. Deep sequencing of small RNAs showed that, at 16°C, abundant CWMV small interfering (si)RNAs accumulated in infected N. benthamiana plants. Silencing of NbRDR6 increased the abundance of CWMV siRNAs and the generation of siRNAs from hotspots in the CWMV genome. In contrast, when shifted to 24°C for 1 week, CWMV siRNAs were markedly fewer in roots of NbRDR6-silenced than in roots of wild-type plants but were similar in the leaves of those plants. Our results demonstrate the root-specific role of NbRDR6 in the inhibition of CWMV accumulation and biogenesis of CWMV siRNAs at higher temperatures.


Assuntos
Vírus do Mosaico/fisiologia , Nicotiana/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Sequência de Bases , Coinfecção , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Raízes de Plantas/virologia , Plantas Geneticamente Modificadas , Potyvirus/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Análise de Sequência de DNA , Temperatura , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia , Triticum/genética , Triticum/imunologia , Triticum/virologia , Replicação Viral
20.
J Gen Virol ; 94(Pt 8): 1908-1916, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23636822

RESUMO

Like other members of the family Reoviridae, rice black-streaked dwarf virus (RBSDV, genus Fijivirus) is thought to replicate and assemble within cytoplasmic viral inclusion bodies, commonly called viroplasms. RBSDV P9-1 is the key protein for the formation of viroplasms, but little is known about the other proteins of the viroplasm or the molecular interactions amongst its components. RBSDV non-structural proteins were screened for their association with P9-1 using a co-immunoprecipitation assay. Only P6 was found to directly interact with P9-1, an interaction that was confirmed by bimolecular fluorescence complementation assay in Spodoptera frugiperda (Sf9) cells. Immunoelectron microscopy showed that P6 and P9-1 co-localized in electron-dense inclusion bodies, indicating that P6 is a constituent of the viroplasm. In addition, non-structural protein P5 also localized to viroplasms and interacted with P6. In Sf9 cells, P6 was diffusely distributed throughout the cytoplasm when expressed alone, but localized to inclusions when co-expressed with P9-1, suggesting that P6 is recruited to viral inclusion bodies by binding to P9-1. P5 localized to the inclusions formed by P9-1 when co-expressed with P6 but did not when P6 was absent, suggesting that P5 is recruited to viroplasms by binding to P6. This study provides a model by which viral non-structural proteins are recruited to RBSDV viroplasms.


Assuntos
Corpos de Inclusão Viral/virologia , Reoviridae/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Imunoprecipitação , Corpos de Inclusão Viral/metabolismo , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Oryza , Ligação Proteica , Células Sf9 , Spodoptera
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa