Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(26): e2302531120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339208

RESUMO

Cobalamin-dependent methionine synthase (MetH) catalyzes the synthesis of methionine from homocysteine and 5-methyltetrahydrofolate (CH3-H4folate) using the unique chemistry of its cofactor. In doing so, MetH links the cycling of S-adenosylmethionine with the folate cycle in one-carbon metabolism. Extensive biochemical and structural studies on Escherichia coli MetH have shown that this flexible, multidomain enzyme adopts two major conformations to prevent a futile cycle of methionine production and consumption. However, as MetH is highly dynamic as well as both a photosensitive and oxygen-sensitive metalloenzyme, it poses special challenges for structural studies, and existing structures have necessarily come from a "divide and conquer" approach. In this study, we investigate E. coli MetH and a thermophilic homolog from Thermus filiformis using small-angle X-ray scattering (SAXS), single-particle cryoelectron microscopy (cryo-EM), and extensive analysis of the AlphaFold2 database to present a structural description of the full-length MetH in its entirety. Using SAXS, we describe a common resting-state conformation shared by both active and inactive oxidation states of MetH and the roles of CH3-H4folate and flavodoxin in initiating turnover and reactivation. By combining SAXS with a 3.6-Å cryo-EM structure of the T. filiformis MetH, we show that the resting-state conformation consists of a stable arrangement of the catalytic domains that is linked to a highly mobile reactivation domain. Finally, by combining AlphaFold2-guided sequence analysis and our experimental findings, we propose a general model for functional switching in MetH.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Escherichia coli , Microscopia Crioeletrônica , Escherichia coli/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Metionina/metabolismo , Ácido Fólico/metabolismo , Vitamina B 12/metabolismo
2.
J Struct Biol ; 216(2): 108072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431179

RESUMO

Efficient and high-accuracy filtering of cryo-electron microscopy (cryo-EM) micrographs is an emerging challenge with the growing speed of data collection and sizes of datasets. Convolutional neural networks (CNNs) are machine learning models that have been proven successful in many computer vision tasks, and have been previously applied to cryo-EM micrograph filtering. In this work, we demonstrate that two strategies, fine-tuning models from pretrained weights and including the power spectrum of micrographs as input, can greatly improve the attainable prediction accuracy of CNN models. The resulting software package, Miffi, is open-source and freely available for public use (https://github.com/ando-lab/miffi).


Assuntos
Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Software , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Algoritmos
3.
J Biol Chem ; 299(8): 105039, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442238

RESUMO

Oxygen-sensitive metalloenzymes are responsible for many of the most fundamental biochemical processes in nature, from the reduction of dinitrogen in nitrogenase to the biosynthesis of photosynthetic pigments. However, biophysical characterization of such proteins under anoxic conditions can be challenging, especially at noncryogenic temperatures. In this study, we introduce the first in-line anoxic small-angle X-ray scattering (anSAXS) system at a major national synchrotron source, featuring both batch-mode and chromatography-mode capabilities. To demonstrate chromatography-coupled anSAXS, we investigated the oligomeric interconversions of the fumarate and nitrate reduction (FNR) transcription factor, which is responsible for the transcriptional response to changing oxygen conditions in the facultative anaerobe Escherichia coli. Previous work has shown that FNR contains a labile [4Fe-4S] cluster that is degraded when oxygen is present and that this change in cluster composition leads to the dissociation of the DNA-binding dimeric form. Using anSAXS, we provide the first direct structural evidence for the oxygen-induced dissociation of the E. coli FNR dimer and its correlation with cluster composition. We further demonstrate how complex FNR-DNA interactions can be studied by investigating the promoter region of the anaerobic ribonucleotide reductase genes, nrdDG, which contains tandem FNR-binding sites. By coupling size-exclusion chromatography-anSAXS with full-spectrum UV-Vis analysis, we show that the [4Fe-4S] cluster-containing dimeric form of FNR can bind to both sites in the nrdDG promoter region. The development of in-line anSAXS greatly expands the toolbox available for the study of complex metalloproteins and provides a foundation for future expansions.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Oxigênio , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxigênio/metabolismo , Raios X , Proteínas de Ligação a DNA/metabolismo
4.
Biochemistry ; 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612958

RESUMO

Enhancing the thermostability of enzymes without impacting their catalytic function represents an important yet challenging goal in protein engineering and biocatalysis. We recently introduced a novel method for enzyme thermostabilization that relies on the computationally guided installation of genetically encoded thioether "staples" into a protein via cysteine alkylation with the noncanonical amino acid O-2-bromoethyl tyrosine (O2beY). Here, we demonstrate the functionality of an expanded set of electrophilic amino acids featuring chloroacetamido, acrylamido, and vinylsulfonamido side-chain groups for protein stapling using this strategy. Using a myoglobin-based cyclopropanase as a model enzyme, our studies show that covalent stapling with p-chloroacetamido-phenylalanine (pCaaF) provides higher stapling efficiency and enhanced stability (thermodynamic and kinetic) compared to the other stapled variants and the parent protein. Interestingly, molecular simulations of conformational flexibility of the cross-links show that the pCaaF staple allows fewer energetically feasible conformers than the other staples, and this property may be a broader indicator of stability enhancement. Using this strategy, pCaaF-stapled variants with significantly enhanced stability against thermal denaturation (ΔTm' = +27 °C) and temperature-induced heme loss (ΔT50 = +30 °C) were obtained while maintaining high levels of catalytic activity and stereoselectivity. Crystallographic analyses of singly and doubly stapled variants provide key insights into the structural basis for stabilization, which includes both direct interactions of the staples with protein residues and indirect interactions through adjacent residues involved in heme binding. This work expands the toolbox of protein stapling strategies available for protein stabilization.

5.
J Biol Chem ; 296: 100107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33219127

RESUMO

A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide to chlorophyllide, catalyzed by dark-operative protochlorophyllide oxidoreductase. Dark-operative protochlorophyllide oxidoreductase contains two [4Fe-4S]-containing component proteins (BchL and BchNB) that assemble upon ATP binding to BchL to coordinate electron transfer and protochlorophyllide reduction. But the precise nature of the ATP-induced conformational changes is poorly understood. We present a crystal structure of BchL in the nucleotide-free form where a conserved, flexible region in the N-terminus masks the [4Fe-4S] cluster at the docking interface between BchL and BchNB. Amino acid substitutions in this region produce a hyperactive enzyme complex, suggesting a role for the N-terminus in autoinhibition. Hydrogen-deuterium exchange mass spectrometry shows that ATP binding to BchL produces specific conformational changes leading to release of the flexible N-terminus from the docking interface. The release also promotes changes within the local environment surrounding the [4Fe-4S] cluster and promotes BchL-complex formation with BchNB. A key patch of amino acids, Asp-Phe-Asp (the 'DFD patch'), situated at the mouth of the BchL ATP-binding pocket promotes intersubunit cross stabilization of the two subunits. A linked BchL dimer with one defective ATP-binding site does not support protochlorophyllide reduction, illustrating nucleotide binding to both subunits as a prerequisite for the intersubunit cross stabilization. The masking of the [4Fe-4S] cluster by the flexible N-terminal region and the associated inhibition of the activity is a novel mechanism of regulation in metalloproteins. Such mechanisms are possibly an adaptation to the anaerobic nature of eubacterial cells with poor tolerance for oxygen.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Trifosfato de Adenosina/química , Catálise , Proteínas Ferro-Enxofre/química , Espectrometria de Massas , Nitrogenase/química , Nitrogenase/metabolismo , Fotossíntese , Protoclorifilida/química , Protoclorifilida/metabolismo , Especificidade por Substrato
6.
Biochemistry ; 60(30): 2331-2340, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34291898

RESUMO

Correlated motions in proteins arising from the collective movements of residues have long been proposed to be fundamentally important to key properties of proteins, from allostery and catalysis to evolvability. Recent breakthroughs in structural biology have made it possible to capture proteins undergoing complex conformational changes, yet intrinsic correlated motions within a conformation remain one of the least understood facets of protein structure. For many decades, the analysis of total X-ray scattering held the promise of animating crystal structures with correlated motions. With recent advances in both X-ray detectors and data interpretation methods, this long-held promise can now be met. In this Perspective, we will introduce how correlated motions are captured in total scattering and provide guidelines for the collection, interpretation, and validation of data. As structural biology continues to push the boundaries, we see an opportunity to gain atomistic insight into correlated motions using total scattering as a bridge between theory and experiment.


Assuntos
Simulação de Dinâmica Molecular , Movimento (Física) , Proteínas/química , Cristalografia por Raios X , Conformação Proteica
7.
Proc Natl Acad Sci U S A ; 115(20): E4594-E4603, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712847

RESUMO

The high fidelity of DNA replication and repair is attributable, in part, to the allosteric regulation of ribonucleotide reductases (RNRs) that maintains proper deoxynucleotide pool sizes and ratios in vivo. In class Ia RNRs, ATP (stimulatory) and dATP (inhibitory) regulate activity by binding to the ATP-cone domain at the N terminus of the large α subunit and altering the enzyme's quaternary structure. Class Ib RNRs, in contrast, have a partial cone domain and have generally been found to be insensitive to dATP inhibition. An exception is the Bacillus subtilis Ib RNR, which we recently reported to be inhibited by physiological concentrations of dATP. Here, we demonstrate that the α subunit of this RNR contains tightly bound deoxyadenosine 5'-monophosphate (dAMP) in its N-terminal domain and that dATP inhibition of CDP reduction is enhanced by its presence. X-ray crystallography reveals a previously unobserved (noncanonical) α2 dimer with its entire interface composed of the partial N-terminal cone domains, each binding a dAMP molecule. Using small-angle X-ray scattering (SAXS), we show that this noncanonical α2 dimer is the predominant form of the dAMP-bound α in solution and further show that addition of dATP leads to the formation of larger oligomers. Based on this information, we propose a model to describe the mechanism by which the noncanonical α2 inhibits the activity of the B. subtilis Ib RNR in a dATP- and dAMP-dependent manner.


Assuntos
Bacillus subtilis/enzimologia , Nucleotídeos de Desoxiadenina/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Regulação Alostérica , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nucleotídeos de Desoxiadenina/química , Ligantes , Ligação Proteica , Conformação Proteica , Ribonucleotídeo Redutases/genética , Espalhamento a Baixo Ângulo , Especificidade por Substrato
8.
J Biol Chem ; 294(12): 4359-4367, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30674554

RESUMO

The naturally occurring R68S substitution of phenylalanine hydroxylase (PheH) causes phenylketonuria (PKU). However, the molecular basis for how the R68S variant leads to PKU remains unclear. Kinetic characterization of R68S PheH establishes that the enzyme is fully active in the absence of allosteric binding of phenylalanine, in contrast to the WT enzyme. Analytical ultracentrifugation establishes that the isolated regulatory domain of R68S PheH is predominantly monomeric in the absence of phenylalanine and dimerizes in its presence, similar to the regulatory domain of the WT enzyme. Fluorescence and small-angle X-ray scattering analyses establish that the overall conformation of the resting form of R68S PheH is different from that of the WT enzyme. The data are consistent with the substitution disrupting the interface between the catalytic and regulatory domains of the enzyme, shifting the equilibrium between the resting and activated forms ∼200-fold, so that the resting form of R68S PheH is ∼70% in the activated conformation. However, R68S PheH loses activity 2 orders of magnitude more rapidly than the WT enzyme at 37 °C and is significantly more sensitive to proteolysis. We propose that, even though this substitution converts the enzyme to a constitutively active enzyme, it results in PKU because of the decrease in protein stability.


Assuntos
Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/metabolismo , Regulação Alostérica , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Cinética , Mutação , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/genética , Conformação Proteica , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Ultracentrifugação , Difração de Raios X
9.
Proc Natl Acad Sci U S A ; 114(39): 10420-10425, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893989

RESUMO

Posttranslational modification of ribosomally synthesized peptides provides an elegant means for the production of biologically active molecules known as RiPPs (ribosomally synthesized and posttranslationally modified peptides). Although the leader sequence of the precursor peptide is often required for turnover, the exact mode of recognition by the modifying enzymes remains unclear for many members of this class of natural products. Here, we have used X-ray crystallography and computational modeling to examine the role of the leader peptide in the biosynthesis of a homolog of streptide, a recently identified peptide natural product with an intramolecular lysine-tryptophan cross-link, which is installed by the radical S-adenosylmethionine (SAM) enzyme, StrB. We present crystal structures of SuiB, a close ortholog of StrB, in various forms, including apo SuiB, SAM-bound SuiB, and a complex of SuiB with SAM and its peptide substrate, SuiA. Although the N-terminal domain of SuiB adopts a typical RRE (RiPP recognition element) motif, which has been implicated in precursor peptide recognition, we observe binding of the leader peptide in the catalytic barrel rather than the N-terminal domain. Computational simulations support a mechanism in which the leader peptide guides posttranslational modification by positioning the cross-linking residues of the precursor peptide within the active site. Together the results shed light onto binding of the precursor peptide and the associated conformational changes needed for the formation of the unique carbon-carbon cross-link in the streptide family of natural products.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/química , S-Adenosilmetionina/química , Streptococcus/metabolismo , Biologia Computacional , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Sinais Direcionadores de Proteínas/genética , Estrutura Secundária de Proteína , Streptococcus/enzimologia
10.
Eur J Neurosci ; 50(9): 3520-3530, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31340076

RESUMO

Sevoflurane, a commonly used anesthetic in surgery, has drawn attention because of its preconditioning effects in hypoxic conditions. To investigate the preconditioning effects in the striatum, a common site for ischemic stroke, we collected whole-cell current-clamp recordings from striatal medium spiny neurons. In our in vitro brain slice experiments, deprivation of oxygen and glucose depolarized the striatal neurons to subthreshold potentials, and the pre-administration of sevoflurane (4%, 15 min) prolonged the time to depolarization. Furthermore, transient hypoxia induced the potentiation of excitatory postsynaptic potentials, which play a part in post-ischemic excitotoxicity. Glibenclamide, a KATP channel inhibitor, reversed the prolonged time to depolarization and the prevention of the pathological potentiation of excitatory responses, indicating that the short exposure to sevoflurane likely participates in neuroprotection against hypoxia via activation of KATP channels. A monocarboxylate transporter blocker, 4-CIN, also depolarized striatal neurons. Interestingly, the blockade of monocarboxylate transporters that supply lactate to neurons caused the pathological potentiation, even in the presence of enough oxygen and glucose. In this case, sevoflurane could not prevent the pathological potentiation, suggesting the involvement of monocarboxylate transporters in the sevoflurane-mediated effects. These results indicate that sevoflurane protects striatal neurons from hypoxic damage and alleviates the pathological potentiation. Under these conditions, sevoflurane may become an effective intervention for patients undergoing surgery.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Corpo Estriado/fisiologia , Hipóxia/fisiopatologia , Sevoflurano/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glibureto/farmacologia , Masculino , Camundongos , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Sevoflurano/antagonistas & inibidores
11.
Chem Rev ; 117(12): 7615-7672, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28558231

RESUMO

X-ray scattering is uniquely suited to the study of disordered systems and thus has the potential to provide insight into dynamic processes where diffraction methods fail. In particular, while X-ray crystallography has been a staple of structural biology for more than half a century and will continue to remain so, a major limitation of this technique has been the lack of dynamic information. Solution X-ray scattering has become an invaluable tool in structural and mechanistic studies of biological macromolecules where large conformational changes are involved. Such systems include allosteric enzymes that play key roles in directing metabolic fluxes of biochemical pathways, as well as large, assembly-line type enzymes that synthesize secondary metabolites with pharmaceutical applications. Furthermore, crystallography has the potential to provide information on protein dynamics via the diffuse scattering patterns that are overlaid with Bragg diffraction. Historically, these patterns have been very difficult to interpret, but recent advances in X-ray detection have led to a renewed interest in diffuse scattering analysis as a way to probe correlated motions. Here, we will review X-ray scattering theory and highlight recent advances in scattering-based investigations of protein solutions and crystals, with a particular focus on complex enzymes.


Assuntos
Proteínas/química , Difração de Raios X/métodos , Animais , Humanos , Conformação Proteica
12.
Biochemistry ; 57(3): 277-285, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29227642

RESUMO

Over the past several years, single-particle cryo-electron microscopy (cryo-EM) has emerged as a leading method for elucidating macromolecular structures at near-atomic resolution, rivaling even the established technique of X-ray crystallography. Cryo-EM is now able to probe proteins as small as hemoglobin (64 kDa) while avoiding the crystallization bottleneck entirely. The remarkable success of cryo-EM has called into question the continuing relevance of X-ray methods, particularly crystallography. To say that the future of structural biology is either cryo-EM or crystallography, however, would be misguided. Crystallography remains better suited to yield precise atomic coordinates of macromolecules under a few hundred kilodaltons in size, while the ability to probe larger, potentially more disordered assemblies is a distinct advantage of cryo-EM. Likewise, crystallography is better equipped to provide high-resolution dynamic information as a function of time, temperature, pressure, and other perturbations, whereas cryo-EM offers increasing insight into conformational and energy landscapes, particularly as algorithms to deconvolute conformational heterogeneity become more advanced. Ultimately, the future of both techniques depends on how their individual strengths are utilized to tackle questions at the frontiers of structural biology. Structure determination is just one piece of a much larger puzzle: a central challenge of modern structural biology is to relate structural information to biological function. In this perspective, we share insight from several leaders in the field and examine the unique and complementary ways in which X-ray methods and cryo-EM can shape the future of structural biology.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Substâncias Macromoleculares/química , Algoritmos , Conformação Proteica
13.
Acc Chem Res ; 50(3): 580-583, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28945428

RESUMO

Over the past century, X-ray crystallography has been defined by a pursuit for perfection and high resolution. The next Holy Grail of crystallography is to embrace imperfection toward a dynamic picture of enzymes.


Assuntos
Cristalografia por Raios X/métodos , Enzimas/química , Estrutura Molecular
14.
Nature ; 484(7393): 265-9, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22419154

RESUMO

Derivatives of vitamin B(12) are used in methyl group transfer in biological processes as diverse as methionine synthesis in humans and CO(2) fixation in acetogenic bacteria. This seemingly straightforward reaction requires large, multimodular enzyme complexes that adopt multiple conformations to alternately activate, protect and perform catalysis on the reactive B(12) cofactor. Crystal structures determined thus far have provided structural information for only fragments of these complexes, inspiring speculation about the overall protein assembly and conformational movements inherent to activity. Here we present X-ray crystal structures of a complete 220 kDa complex that contains all enzymes responsible for B(12)-dependent methyl transfer, namely the corrinoid iron-sulphur protein and its methyltransferase from the model acetogen Moorella thermoacetica. These structures provide the first three-dimensional depiction of all protein modules required for the activation, protection and catalytic steps of B(12)-dependent methyl transfer. In addition, the structures capture B(12) at multiple locations between its 'resting' and catalytic positions, allowing visualization of the dramatic protein rearrangements that enable methyl transfer and identification of the trajectory for B(12) movement within the large enzyme scaffold. The structures are also presented alongside in crystallo spectroscopic data, which confirm enzymatic activity within crystals and demonstrate the largest known conformational movements of proteins in a crystalline state. Taken together, this work provides a model for the molecular juggling that accompanies turnover and helps explain why such an elaborate protein framework is required for such a simple, yet biologically essential reaction.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , Moorella/enzimologia , Vitamina B 12/metabolismo , Sítios de Ligação , Biocatálise , Corrinoides/metabolismo , Cristalografia por Raios X , Ácido Fólico/metabolismo , Metilação , Modelos Biológicos , Modelos Moleculares , Moorella/química , Multimerização Proteica , Estrutura Terciária de Proteína
15.
J Cardiothorac Vasc Anesth ; 32(1): 187-196, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28778770

RESUMO

OBJECTIVES: To investigate an association between the preoperative plasma B-type natriuretic peptide (BNP) concentration and cerebral regional saturation (rSO2) measured using the INVOS oximeter (Medtronic, Minneapolis, MN). DESIGN: A retrospective data analysis. SETTING: Single university hospital. PARTICIPANTS: Patients undergoing off-pump coronary artery bypass (OPCAB) surgery. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Associations of variables obtained from preoperative blood laboratory tests and transthoracic echocardiography with baseline rSO2 before induction of general anesthesia were investigated using bivariate and multivariate regression analyses in 330 OPCAB patients. With bivariate analyses, age; body size-related variables such as weight and body surface area; hematologic function-related variables such as blood hemoglobin (Hb) concentration and arterial oxygen saturation; renal function-related variables including estimated glomerular filtration rate, creatinine, and blood urea nitrogen; hepatic function-related variables including cholinesterase, albumin, total bilirubin, and alanine aminotransferase; serum electrolytes including sodium, chloride, and phosphorus; BNP or log-transformed BNP; and 13 transthoracic echocardiography variables such as left ventricular ejection fraction highly significantly correlated with baseline rSO2 (p < 0.0001). However, the multiple regression analysis revealed that only BNP and Hb remained major factors significantly associated with baseline rSO2 (p < 0.0001), while estimated glomerular filtration rate, arterial oxygen saturation, and body surface area remained minor factors (p < 0.05). Baseline rSO2 correlated better with log-transformed BNP than with BNP, indicating that rSO2 correlated with BNP in an exponential fashion. CONCLUSIONS: Preoperative BNP and Hb concentrations were 2 major factors associated with INVOS rSO2 in patients undergoing OPCAB.


Assuntos
Ponte de Artéria Coronária sem Circulação Extracorpórea/métodos , Hemoglobinas/metabolismo , Peptídeo Natriurético Encefálico/sangue , Oximetria/métodos , Consumo de Oxigênio/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oximetria/instrumentação , Estudos Retrospectivos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
16.
Biochemistry ; 55(2): 373-81, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26727048

RESUMO

Ribonucleotide reductases (RNRs) are responsible for all de novo biosynthesis of DNA precursors in nature by catalyzing the conversion of ribonucleotides to deoxyribonucleotides. Because of its essential role in cell division, human RNR is a target for a number of anticancer drugs in clinical use. Like other class Ia RNRs, human RNR requires both a radical-generation subunit (ß) and nucleotide-binding subunit (α) for activity. Because of their complex dependence on allosteric effectors, however, the active and inactive quaternary forms of many class Ia RNRs have remained in question. Here, we present an X-ray crystal structure of the human α subunit in the presence of inhibiting levels of dATP, depicting a ring-shaped hexamer (α6) where the active sites line the inner hole. Surprisingly, our small-angle X-ray scattering (SAXS) results indicate that human α forms a similar hexamer in the presence of ATP, an activating effector. In both cases, α6 is assembled from dimers (α2) without a previously proposed tetramer intermediate (α4). However, we show with SAXS and electron microscopy that at millimolar ATP, the ATP-induced α6 can further interconvert with higher-order filaments. Differences in the dATP- and ATP-induced α6 were further examined by SAXS in the presence of the ß subunit and by activity assays as a function of ATP or dATP. Together, these results suggest that dATP-induced α6 is more stable than the ATP-induced α6 and that stabilization of this ring-shaped configuration provides a mechanism to prevent access of the ß subunit to the active site of α.


Assuntos
Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Regulação Alostérica , Cristalografia por Raios X , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
17.
J Am Chem Soc ; 138(20): 6506-16, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27145334

RESUMO

Mammalian phenylalanine hydroxylase (PheH) is an allosteric enzyme that catalyzes the first step in the catabolism of the amino acid phenylalanine. Following allosteric activation by high phenylalanine levels, the enzyme catalyzes the pterin-dependent conversion of phenylalanine to tyrosine. Inability to control elevated phenylalanine levels in the blood leads to increased risk of mental disabilities commonly associated with the inherited metabolic disorder, phenylketonuria. Although extensively studied, structural changes associated with allosteric activation in mammalian PheH have been elusive. Here, we examine the complex allosteric mechanisms of rat PheH using X-ray crystallography, isothermal titration calorimetry (ITC), and small-angle X-ray scattering (SAXS). We describe crystal structures of the preactivated state of the PheH tetramer depicting the regulatory domains docked against the catalytic domains and preventing substrate binding. Using SAXS, we further describe the domain movements involved in allosteric activation of PheH in solution and present the first demonstration of chromatography-coupled SAXS with Evolving Factor Analysis (EFA), a powerful method for separating scattering components in a model-independent way. Together, these results support a model for allostery in PheH in which phenylalanine stabilizes the dimerization of the regulatory domains and exposes the active site for substrate binding and other structural changes needed for activity.


Assuntos
Cromatografia/métodos , Cristalografia por Raios X/métodos , Fenilalanina Hidroxilase/química , Animais , Calorimetria , Domínio Catalítico , Conformação Proteica , Ratos , Espalhamento a Baixo Ângulo
18.
Proc Natl Acad Sci U S A ; 110(10): 3835-40, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431160

RESUMO

Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates (dNDPs). The Escherichia coli class Ia RNR uses a mechanism of radical propagation by which a cysteine in the active site of the RNR large (α2) subunit is transiently oxidized by a stable tyrosyl radical (Y•) in the RNR small (ß2) subunit over a 35-Å pathway of redox-active amino acids: Y122• ↔ [W48?] ↔ Y356 in ß2 to Y731 ↔ Y730 ↔ C439 in α2. When 3-aminotyrosine (NH2Y) is incorporated in place of Y730, a long-lived NH2Y730• is generated in α2 in the presence of wild-type (wt)-ß2, substrate, and effector. This radical intermediate is chemically and kinetically competent to generate dNDPs. Herein, evidence is presented that NH2Y730• induces formation of a kinetically stable α2ß2 complex. Under conditions that generate NH2Y730•, binding between Y730NH2Y-α2 and wt-ß2 is 25-fold tighter (Kd = 7 nM) than for wt-α2


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Domínio Catalítico , Transporte de Elétrons , Estabilidade Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cinética , Microscopia Eletrônica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleotídeo Redutases/classificação , Ribonucleotídeo Redutases/genética , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Difração de Raios X
19.
Eur J Neurosci ; 40(8): 3147-57, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25139222

RESUMO

The volatile anesthetic sevoflurane, which is widely used in pediatric surgery, has proposed effects on GABAA receptor-mediated extrasynaptic tonic inhibition. In the developing striatum, medium-sized spiny projection neurons have tonic GABA currents, which function in the excitatory/inhibitory balance and maturation of striatal neural circuits. In this study, we examined the effects of sevoflurane on the tonic GABA currents of medium spiny neurons in developing striatal slices. Sevoflurane strongly increased GABAA receptor-mediated tonic conductance at postnatal days 3-35. The antagonist of the GABA transporter-1, 1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride further increased tonic GABA conductance during the application of sevoflurane, thereby increasing the total magnitude of tonic currents. Both GABA (5 µM) and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol hydrochloride, the δ-subunit-containing GABAA receptor agonist, induced tonic GABA currents in medium spiny neurons but not in cholinergic neurons. However, sevoflurane additively potentiated the tonic GABA currents in both cells. Interestingly, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol hydrochloride-sensitive neurons made a large current response to sevoflurane, indicating the contribution of the δ-subunit on sevoflurane-enhanced tonic GABA currents. Our findings suggest that sevoflurane can affect the tone of tonic GABA inhibition in a developing striatal neural network.


Assuntos
Anestésicos Inalatórios/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Éteres Metílicos/farmacologia , Neostriado/efeitos dos fármacos , Neostriado/crescimento & desenvolvimento , Receptores de GABA-A/fisiologia , Animais , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Sevoflurano , Ácido gama-Aminobutírico/metabolismo
20.
Proc Natl Acad Sci U S A ; 108(52): 21046-51, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160671

RESUMO

Essential for DNA biosynthesis and repair, ribonucleotide reductases (RNRs) convert ribonucleotides to deoxyribonucleotides via radical-based chemistry. Although long known that allosteric regulation of RNR activity is vital for cell health, the molecular basis of this regulation has been enigmatic, largely due to a lack of structural information about how the catalytic subunit (α(2)) and the radical-generation subunit (ß(2)) interact. Here we present the first structure of a complex between α(2) and ß(2) subunits for the prototypic RNR from Escherichia coli. Using four techniques (small-angle X-ray scattering, X-ray crystallography, electron microscopy, and analytical ultracentrifugation), we describe an unprecedented α(4)ß(4) ring-like structure in the presence of the negative activity effector dATP and provide structural support for an active α(2)ß(2) configuration. We demonstrate that, under physiological conditions, E. coli RNR exists as a mixture of transient α(2)ß(2) and α(4)ß(4) species whose distributions are modulated by allosteric effectors. We further show that this interconversion between α(2)ß(2) and α(4)ß(4) entails dramatic subunit rearrangements, providing a stunning molecular explanation for the allosteric regulation of RNR activity in E. coli.


Assuntos
Escherichia coli/enzimologia , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Ribonucleotídeo Redutases/química , Regulação Alostérica/fisiologia , Cristalização , Cristalografia por Raios X , DNA/biossíntese , Microscopia Eletrônica , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa