RESUMO
BACKGROUND: TP53 has a crucial role in the DNA damage response. We therefore tested the hypothesis that taxanes confer a greater advantage than do anthracyclines on breast cancers with mutated TP53 than in those with wild-type TP53. METHODS: In an open-label, phase 3 study, women (age <71 years) with locally advanced, inflammatory, or large operable breast cancers were randomly assigned in a 1:1 ratio to either a standard anthracycline regimen (six cycles of intravenous fluorouracil 500 mg/m², epirubicin 100 mg/m², and cyclophosphamide 500 mg/m² every 21 days [FEC100], or fluorouracil 600 mg/m², epirubicin 75 mg/m², cyclophosphamide 900 mg/m² [tailored FEC] starting on day 1 and then every 21 days) or a taxane-based regimen (three cycles of docetaxel 100 mg/m², intravenously infused over 1 h on day 1 every 21 days, followed by three cycles of intravenous epirubicin 90 mg/m² and docetaxel 75 mg/m² on day 1 every 21 days [T-ET]) at 42 centres in Europe. Randomisation was by use of a minimisation method that stratified patients by institution and initial tumour stage. The primary endpoint was progression-free survival (PFS) according to TP53 status. Analysis was by intention to treat. This is the final analysis of this trial. The study is registered with ClinicalTrials.gov, number NCT00017095. FINDINGS: 928 patients were enrolled in the FEC group and 928 in the T-ET group. TP53 status was not assessable for 183 (20%) patients in the FEC group and 204 (22%) patients in the T-ET group mainly because of low tumour-cell content in the biopsy. 361 primary endpoint events were recorded in the FEC group and 314 in the T-ET group. In patients with TP53-mutated tumours, 5-year PFS was 59·5% (95% CI 53·4-65·1) in the T-ET group (n=326) and 55·3% (49·2-60·9) in the FEC group (n=318; hazard ratio 0·84, 98% CI 0·63-1·14; p=0·17). In patients with TP53 wild-type tumours, 5-year PFS was 66·8% (95% CI 61·4-71·6) in the T-ET group (n=398) and 64·7% (59·6-69·4) in the FEC group (n=427; 0·89, 98% CI 0·68-1·18; p=0·35). For all patients, irrespective of TP53 status, 5-year PFS was 65·1% (95% CI 61·6-68·3) in the T-ET group and 60·8% (57·3-64·2) in the FEC group (0·85, 98% CI 0·71-1·02; p=0·035). At the sites using FEC100 versus T-ET, the most common grade 3 or 4 adverse events were febrile neutropenia (75 [9%] of 803 vs 173 [21%] of 809, respectively), and neutropenia (653 [81%] vs 730 [90%], respectively). At the sites using tailored FEC versus T-ET, the most common grade 3 or 4 adverse events were febrile neutropenia (ten [8%] of 118 vs 26 [22%] of 116, respectively), and neutropenia (100 [85%] vs 115 [99%], respectively). Two patients died of toxicity during or within 30 days of chemotherapy completion and without disease relapse (one in each group). INTERPRETATION: Although TP53 status was prognostic for overall survival, it was not predictive of preferential sensitivity to taxanes. TP53 status tested by use of the yeast assay in this patient population cannot be used to select patients for an anthracycline-based chemotherapy versus a taxane-based chemotherapy. FUNDING: US National Cancer Institute, La Ligue Nationale Contre le Cancer, European Union, Pharmacia, and Sanofi-Aventis.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Terapia Neoadjuvante , Taxoides/uso terapêutico , Proteína Supressora de Tumor p53/fisiologia , Adulto , Idoso , Neoplasias da Mama/química , Neoplasias da Mama/mortalidade , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Receptor ErbB-2/análise , Receptores de Estrogênio/análise , Taxoides/administração & dosagem , Proteína Supressora de Tumor p53/genéticaRESUMO
BACKGROUND: We have previously described gene-expression signatures that predict growth inhibitory and cytotoxic effects of common chemotherapeutic drugs in vitro. The aim of this study was to confirm the validity of these gene-expression signatures in a large series of patients with oestrogen-receptor-negative breast tumours who were treated in a phase III neoadjuvant clinical trial. METHODS: This trial compares a non-taxane regimen (fluorouracil, epirubicin, and cyclophosphamide [FEC] for six cycles) with a taxane regimen (docetaxel for three cycles followed by epirubicin plus docetaxel [TET] for three cycles) in women with oestrogen-receptor-negative breast cancer. The primary endpoint of the study is the difference in progression-free survival based on TP53 status and will be reported later. Predicting response with gene signatures was a planned secondary endpoint of the trial and is reported here. Pathological complete response, defined as complete disappearance of the tumour with no more than a few scattered tumour cells detected by the pathologist in the resection specimen, was used to assess chemosensitivity. RNA was prepared from sections of frozen biopsies taken at diagnosis and hybridised to Affymetrix X3P microarrays. In-vitro single-agent drug sensitivity signatures were combined to obtain FEC and TET regimen-specific signatures. This study is registered on the clinical trials site of the US National Cancer Institute website http://www.clinicaltrials.gov/ct/show/NCT00017095. FINDINGS: Of 212 patients with oestrogen-receptor-negative tumours assessed, 87 patients were excluded. 125 oestrogen-receptor-negative tumours (55 that showed pathological complete responses) were tested: 66 in the FEC group (28 that showed pathological complete responses) and 59 in the TET group (27 that showed pathological complete responses). The regimen-specific signatures significantly predicted pathological complete response in patients treated with the appropriate regimen (p<0.0001). The FEC predictor had a sensitivity of 96% (27 of 28 patients [95% CI 82-99]), specificity of 66% (25 of 38 patients [50-79]), positive predictive value (PPV) of 68% (27 of 40 patients [52-80]), and negative predictive value (NPV) of 96% (25 of 26 patients [81-99]). The TET predictor had a sensitivity of 93% (25 of 27 patients [77-98]), specificity 69% (22 of 32 patients [51-82]), PPV of 71% (25 of 35 patients [55-84]), and NPV of 92% (22 of 24 patients [74-98]). Analysis of tumour size, grade, nodal status, age, and regimen-specific signatures showed that the genomic signatures were the only independent variables predicting pathological complete response at p<0.01. Selection of patients with these signatures would increase the proportion of patients with pathological complete responses from 44% to around 70% in the patients studied here. INTERPRETATION: We have validated the use of regimen-specific drug sensitivity signatures in the context of a multicentre randomised trial. The high NPV of both signatures may allow early selection of patients with breast cancer who should be considered for trials with new drugs.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Testes Genéticos/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Seleção de Pacientes , Adulto , Idoso , Neoplasias da Mama/química , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Quimioterapia Adjuvante , Ciclofosfamida/administração & dosagem , Intervalo Livre de Doença , Docetaxel , Epirubicina/administração & dosagem , Feminino , Fluoruracila/administração & dosagem , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Curva ROC , Receptores de Estrogênio/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Taxoides/administração & dosagem , Resultado do TratamentoRESUMO
INTRODUCTION: About 70% of breast cancers express oestrogen receptor alpha (ESR1/ERalpha) and are oestrogen-dependent for growth. In contrast with the highly proliferative nature of ERalpha-positive tumour cells, ERalpha-positive cells in normal breast tissue rarely proliferate. Because ERalpha expression is rapidly lost when normal human mammary epithelial cells (HMECs) are grown in vitro, breast cancer models derived from HMECs are ERalpha-negative. Currently only tumour cell lines are available to model ERalpha-positive disease. To create an ERalpha-positive breast cancer model, we have forced normal HMECs derived from reduction mammoplasty tissue to express ERalpha in combination with other relevant breast cancer genes. METHODS: Candidate genes were selected based on breast cancer microarray data and cloned into lentiviral vectors. Primary HMECs prepared from reduction mammoplasty tissue were infected with lentiviral particles. Infected HMECs were characterised by Western blotting, immunofluorescence microscopy, microarray analysis, growth curves, karyotyping and SNP chip analysis. The tumorigenicity of the modified HMECs was tested after orthotopic injection into the inguinal mammary glands of NOD/SCID mice. Cells were marked with a fluorescent protein to allow visualisation in the fat pad. The growth of the graft was analysed by fluorescence microscopy of the mammary glands and pathological analysis of stained tissue sections. Oestrogen dependence of tumour growth was assessed by treatment with the oestrogen antagonist fulvestrant. RESULTS: Microarray analysis of ERalpha-positive tumours reveals that they commonly overexpress the Polycomb-group gene BMI1. Lentiviral transduction with ERalpha, BMI1, TERT and MYC allows primary HMECs to be expanded in vitro in an oestrogen-dependent manner. Orthotopic xenografting of these cells into the mammary glands of NOD/SCID mice results in the formation of ERalpha-positive tumours that metastasise to multiple organs. The cells remain wild type for TP53, diploid and genetically stable. In vivo tumour growth and in vitro proliferation of cells explanted from tumours are dependent on oestrogen. CONCLUSION: We have created a genetically defined model of ERalpha-positive human breast cancer based on normal HMECs that has the potential to model human oestrogen-dependent breast cancer in a mouse and enables the study of mechanisms involved in tumorigenesis and metastasis.
Assuntos
Neoplasias da Mama/patologia , Mama/citologia , Transformação Celular Neoplásica , Células Epiteliais/citologia , Estrogênios/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Técnicas de Cultura de Células , Células Epiteliais/patologia , Receptor alfa de Estrogênio/genética , Feminino , Fibroblastos/citologia , Fibroblastos/patologia , Vetores Genéticos , Humanos , Cariotipagem , Lentivirus/genética , Análise de Sequência com Séries de OligonucleotídeosRESUMO
BCL9/9L proteins enhance the transcriptional output of the ß-catenin/TCF transcriptional complex and contribute critically to upholding the high WNT signaling level required for stemness maintenance in the intestinal epithelium. Here we show that a BCL9/9L-dependent gene signature derived from independent mouse colorectal cancer (CRC) models unprecedentedly separates patient subgroups with regard to progression free and overall survival. We found that this effect was by and large attributable to stemness related gene sets. Remarkably, this signature proved associated with recently described poor prognosis CRC subtypes exhibiting high stemness and/or epithelial-to-mesenchymal transition (EMT) traits. Consistent with the notion that high WNT signaling is required for stemness maintenance, ablating Bcl9/9l-ß-catenin in murine oncogenic intestinal organoids provoked their differentiation and completely abrogated their tumorigenicity, while not affecting their proliferation. Therapeutic strategies aimed at targeting WNT responses may be limited by intestinal toxicity. Our findings suggest that attenuating WNT signaling to an extent that affects stemness maintenance without disturbing intestinal renewal might be well tolerated and prove sufficient to reduce CRC recurrence and dramatically improve disease outcome.
Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Análise por Conglomerados , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Prognóstico , Deleção de Sequência , Fatores de Transcrição , Transcriptoma , beta Catenina/antagonistas & inibidores , beta Catenina/genéticaRESUMO
Canonical Wnt signaling plays a critical role in stem cell maintenance in epithelial homeostasis and carcinogenesis. Here, we show that in the mouse this role is critically mediated by Bcl9/Bcl9l, the mammalian homologues of Legless, which in Drosophila is required for Armadillo/beta-catenin signaling. Conditional ablation of Bcl9/Bcl9l in the intestinal epithelium, where the essential role of Wnt signaling in epithelial homeostasis and stem cell maintenance is well documented, resulted in decreased expression of intestinal stem cell markers and impaired regeneration of ulcerated colon epithelium. Adenocarcinomas with aberrant Wnt signaling arose with similar incidence in wild-type and mutant mice. However, transcriptional profiles were vastly different: Whereas wild-type tumors displayed characteristics of epithelial-mesenchymal transition (EMT) and stem cell-like properties, these properties were largely abrogated in mutant tumors. These findings reveal an essential role for Bcl9/Bcl9l in regulating a subset of Wnt target genes involved in controlling EMT and stem cell-related features and suggest that targeting the Bcl9/Bcl9l arm of Wnt signaling in Wnt-activated cancers might attenuate these traits, which are associated with tumor invasion, metastasis, and resistance to therapy.
Assuntos
Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Wnt/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/fisiologia , Fatores de Transcrição , Proteínas Wnt/biossíntese , Proteínas Wnt/genéticaRESUMO
To better understand the relationship between tumor-host interactions and the efficacy of chemotherapy, we have developed an analytical approach to quantify several biological processes observed in gene expression data sets. We tested the approach on tumor biopsies from individuals with estrogen receptor-negative breast cancer treated with chemotherapy. We report that increased stromal gene expression predicts resistance to preoperative chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC) in subjects in the EORTC 10994/BIG 00-01 trial. The predictive value of the stromal signature was successfully validated in two independent cohorts of subjects who received chemotherapy but not in an untreated control group, indicating that the signature is predictive rather than prognostic. The genes in the signature are expressed in reactive stroma, according to reanalysis of data from microdissected breast tumor samples. These findings identify a previously undescribed resistance mechanism to FEC treatment and suggest that antistromal agents may offer new ways to overcome resistance to chemotherapy.