Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(3): 529-542, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38131156

RESUMO

An essential process in transmission of the malaria parasite to the Anopheles vector is the conversion of mature gametocytes into gametes within the mosquito gut, where they egress from the red blood cell (RBC). During egress, male gametocytes undergo exflagellation, leading to the formation of eight haploid motile microgametes, while female gametes retain their spherical shape. Gametocyte egress depends on sequential disruption of the parasitophorous vacuole membrane and the host cell membrane. In other life cycle stages of the malaria parasite, phospholipases have been implicated in membrane disruption processes during egress, however their importance for gametocyte egress is relatively unknown. Here, we performed comprehensive functional analyses of six putative phospholipases for their role during development and egress of Plasmodium falciparum gametocytes. We localize two of them, the prodrug activation and resistance esterase (PF3D7_0709700) and the lysophospholipase 1 (PF3D7_1476700), to the parasite plasma membrane. Subsequently, we show that disruption of most of the studied phospholipase genes does neither affect gametocyte development nor egress. The exception is the putative patatin-like phospholipase 3 (PF3D7_0924000), whose gene deletion leads to a delay in male gametocyte exflagellation, indicating an important, albeit not essential, role of this enzyme in male gametogenesis.


Assuntos
Malária , Plasmodium falciparum , Animais , Masculino , Feminino , Fosfolipases/genética , Mosquitos Vetores , Eritrócitos/parasitologia
2.
Trends Parasitol ; 39(12): 1004-1013, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827961

RESUMO

A critical part of the malaria parasite's life cycle is invasion of red blood cells (RBCs) by merozoites. Inside RBCs, the parasite forms a schizont, which undergoes segmentation to produce daughter merozoites. These cells are released, establishing cycles of invasion. Traditionally, merozoites are represented as nonmotile, egg-shaped cells that invade RBCs 'narrower end' first and pack within schizonts with this narrower end facing outwards. Here, we discuss recent evidence and re-evaluate previous data which suggest that merozoites are capable of motility and have spherical or elongated-teardrop shapes. Furthermore, merozoites invade RBCs 'wider end' first and pack within schizonts with this wider end facing outwards. We encourage the field to review this revised model and consider its implications for future studies.


Assuntos
Malária , Parasitos , Animais , Malária/parasitologia , Esquizontes , Merozoítos , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa