Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
FASEB J ; 37(4): e22853, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36939304

RESUMO

Obesity is characterized by systemic low-grade inflammation associated with disturbances of intestinal homeostasis and microbiota dysbiosis. Mitochondrial metabolism sustains epithelial homeostasis by providing energy to colonic epithelial cells (CEC) but can be altered by dietary modulations of the luminal environment. Our study aimed at evaluating whether the consumption of an obesogenic diet alters the mitochondrial function of CEC in mice. Mice were fed for 22 weeks with a 58% kcal fat diet (diet-induced obesity [DIO] group) or a 10% kcal fat diet (control diet, CTRL). Colonic crypts were isolated to assess mitochondrial function while colonic content was collected to characterize microbiota and metabolites. DIO mice developed obesity, intestinal hyperpermeability, and increased endotoxemia. Analysis of isolated colonic crypt bioenergetics revealed a mitochondrial dysfunction marked by decreased basal and maximal respirations and lower respiration linked to ATP production in DIO mice. Yet, CEC gene expression of mitochondrial respiration chain complexes and mitochondrial dynamics were not altered in DIO mice. In parallel, DIO mice displayed increased colonic bile acid concentrations, associated with higher abundance of Desulfovibrionaceae. Sulfide concentration was markedly increased in the colon content of DIO mice. Hence, chronic treatment of CTRL mouse colon organoids with sodium sulfide provoked mitochondrial dysfunction similar to that observed in vivo in DIO mice while acute exposure of isolated mitochondria from CEC of CTRL mice to sodium sulfide diminished complex IV activity. Our study provides new insights into colon mitochondrial dysfunction in obesity by revealing that increased sulfide production by DIO-induced dysbiosis impairs complex IV activity in mouse CEC.


Assuntos
Dieta Hiperlipídica , Disbiose , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Disbiose/metabolismo , Obesidade/metabolismo , Sulfetos/metabolismo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL
2.
Amino Acids ; 54(10): 1371-1382, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35107624

RESUMO

Indole, which is produced by the intestinal microbiota from L-tryptophan, is recovered at millimolar concentrations in the human feces. Indoxyl sulfate (IS), the main indole co-metabolite, can be synthesized by the host tissues. Although indole has been shown to restore intestinal barrier function in experimental colitis, little is known on the effects of indole and IS on colonic epithelial cell metabolism and physiology. In this study, we compared the effects of indole and IS on the human colonic epithelial HT-29 Glc-/+ and Caco-2 cell lines, exposed to these compounds for 1-48 h. Indole, but not IS, was cytotoxic at 5 mM, altering markedly colonocyte proliferation. Both molecules, used up to 2.5 mM, induced a transient oxidative stress in colonocytes, that was detected after 1 h, but not after 48 h exposure. This was associated with the induction after 24 h of the expression of glutathione reductase, heme oxygenase, and cytochrome P450 (CYP)1B1. Indole and IS used at 2.5 mM impaired colonocyte respiration by diminishing mitochondrial oxygen consumption and maximal respiratory capacity. Indole, but not IS, displayed a slight genotoxic effect on colonocytes. Indole, but not IS, increased transepithelial resistance in colonocyte monolayers. Indole and IS used at 2.5 mM, induced a secretion of the pro-inflammatory interleukin-8 after 3 h incubation, and an increase of tumor necrosis factor-α secretion after 48 h. Although our results suggest beneficial effect of indole on epithelial integrity, overall they indicate that indole and IS share adverse effects on colonocyte respiration and production of reactive oxygen species, in association with the induction of enzymes of the antioxidant defense system. This latter process can be viewed as an adaptive response toward oxidative stress. Both compounds increased the production of inflammatory cytokines from colonocytes. However, only indole, but not IS, affected DNA integrity in colonocytes. Since colonocytes little convert indole to IS, the deleterious effects of indole on colonocytes appear to be unrelated to its conversion to IS.


Assuntos
Indicã , Triptofano , Humanos , Indicã/metabolismo , Triptofano/metabolismo , Células CACO-2 , Colo/metabolismo , Células Epiteliais/metabolismo , Bactérias , Indóis/farmacologia , Indóis/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G125-G135, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084401

RESUMO

Among bacterial metabolites, hydrogen sulfide (H2S) has received increasing attention. The epithelial cells of the large intestine are exposed to two sources of H2S. The main one is the luminal source that results from specific bacteria metabolic activity toward sulfur-containing substrates. The other source in colonocytes is from the intracellular production mainly through cystathionine ß-synthase (CBS) activity. H2S is oxidized by the mitochondrial sulfide oxidation unit, resulting in ATP synthesis, and, thus, establishing this compound as the first mineral energy substrate in colonocytes. However, when the intracellular H2S concentration exceeds the colonocyte capacity for its oxidation, it inhibits the mitochondrial respiratory chain, thus affecting energy metabolism. Higher luminal H2S concentration affects the integrity of the mucus layer and displays proinflammatory effects. However, a low/minimal amount of endogenous H2S exerts an anti-inflammatory effect on the colon mucosa, pointing out the ambivalent effect of H2S depending on its intracellular concentration. Regarding colorectal carcinogenesis, forced CBS expression in late adenoma-like colonocytes increased their proliferative activity, bioenergetics capacity, and tumorigenicity; whereas, genetic ablation of CBS in mice resulted in a reduced number of mutagen-induced aberrant crypt foci. Activation of endogenous H2S production and low H2S extracellular concentration enhance cancerous colorectal cell proliferation. Higher exogenous H2S concentrations markedly reduce mitochondrial ATP synthesis and proliferative capacity in cancerous cells and enhance glycolysis but do not affect their ATP cell content or viability. Thus, it appears that, notably through an effect on colonocyte energy metabolism, endogenous and microbiota-derived H2S are involved in the host intestinal physiology and physiopathology.


Assuntos
Colo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Sulfeto de Hidrogênio/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Reto/efeitos dos fármacos , Animais , Humanos , Sulfeto de Hidrogênio/toxicidade , Mucosa Intestinal/citologia
4.
FASEB J ; 34(1): 222-236, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914644

RESUMO

Hyperosmotic conditions are associated to several pathological states. In this article, we evaluate the consequence of hyperosmotic medium on cellular energy metabolism. We demonstrate that exposure of cells to hyperosmotic conditions immediately reduces the mitochondrial oxidative phosphorylation rate. This causes an increase in glycolysis, which represses further respiration. This is known as the Warburg or Crabtree effect. In addition to aerobic glycolysis, we observed two other cellular responses that would help to preserve cellular ATP level and viability: A reduction in the cellular ATP turnover rate and a partial mitochondrial uncoupling which is expected to enhance ATP production by Krebs cycle. The latter is likely to constitute another metabolic adaptation to compensate for deficient oxidative phosphorylation that, importantly, is not dependent on glucose.


Assuntos
Neuroblastoma/metabolismo , Consumo de Oxigênio/fisiologia , Animais , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular , Cricetinae , Cricetulus , Metabolismo Energético , Células HEK293 , Humanos , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Wistar
5.
J Nutr ; 150(Suppl 1): 2524S-2531S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000164

RESUMO

The metabolism of methionine and cysteine in the body tissues determines the concentrations of several metabolites with various biologic activities, including homocysteine, hydrogen sulfide (H2S), taurine, and glutathione. Hyperhomocysteinemia, which is correlated with lower HDL cholesterol in blood in volunteers and animal models, has been associated with an increased risk for cardiovascular diseases. In humans, the relation between methionine intake and hyperhomocysteinemia is dependent on vitamin status (vitamins B-6 and B-12 and folic acid) and on the supply of other amino acids. However, lowering homocysteinemia by itself is not sufficient for decreasing the risk of cardiovascular disease progression. Other compounds related to methionine metabolism have recently been identified as being involved in the risk of atherosclerosis and steatohepatitis. Indeed, the metabolism of sulfur amino acids has an impact on phosphatidylcholine (PC) metabolism, and anomalies in PC synthesis due to global hypomethylation have been associated with disturbances of lipid metabolism. In addition, impairment of H2S synthesis from cysteine favors atherosclerosis and steatosis in animal models. The effects of taurine on lipid metabolism appear heterogeneous depending on the populations of volunteers studied. A decrease in the concentration of intracellular glutathione, a tripeptide involved in redox homeostasis, is implicated in the etiology of cardiovascular diseases and steatosis. Last, supplementation with betaine, a compound that allows remethylation of homocysteine to methionine, decreases basal and methionine-stimulated homocysteinemia; however, it adversely increases plasma total and LDL cholesterol. The study of these metabolites may help determine the range of optimal and safe intakes of methionine and cysteine in dietary proteins and supplements. The amino acid requirement for protein synthesis in different situations and for optimal production of intracellular compounds involved in the regulation of lipid metabolism also needs to be considered for dietary attenuation of atherosclerosis and steatosis risk.


Assuntos
Aterosclerose/etiologia , Cisteína/metabolismo , Fígado Gorduroso/etiologia , Metabolismo dos Lipídeos , Metionina/metabolismo , Estado Nutricional , Enxofre/metabolismo , Aminoácidos Sulfúricos/metabolismo , Animais , Aterosclerose/metabolismo , Betaína/metabolismo , Betaína/farmacologia , Colesterol/sangue , Proteínas Alimentares/química , Suplementos Nutricionais , Fígado Gorduroso/metabolismo , Glutationa/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/etiologia , Hiper-Homocisteinemia/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Necessidades Nutricionais , Fosfatidilcolinas/metabolismo , Compostos de Enxofre/metabolismo , Taurina/metabolismo , Taurina/farmacologia
6.
Am J Pathol ; 187(3): 476-486, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28082121

RESUMO

Evidence, mostly from experimental models, has accumulated, indicating that modifications of bacterial metabolite concentrations in the large intestine luminal content, notably after changes in the dietary composition, may have important beneficial or deleterious consequences for the colonic epithelial cell metabolism and physiology in terms of mitochondrial energy metabolism, reactive oxygen species production, gene expression, DNA integrity, proliferation, and viability. Recent data suggest that for some bacterial metabolites, like hydrogen sulfide and butyrate, the extent of their oxidation in colonocytes affects their capacity to modulate gene expression in these cells. Modifications of the luminal bacterial metabolite concentrations may, in addition, affect the colonic pH and osmolarity, which are known to affect colonocyte biology per se. Although the colonic epithelium appears able to face, up to some extent, changes in its luminal environment, notably by developing a metabolic adaptive response, some of these modifications may likely affect the homeostatic process of colonic epithelium renewal and the epithelial barrier function. The contribution of major changes in the colonocyte luminal environment in pathological processes, like mucosal inflammation, preneoplasia, and neoplasia, although suggested by several studies, remains to be precisely evaluated, particularly in a long-term perspective.


Assuntos
Microambiente Celular , Colo/patologia , Células Epiteliais/patologia , Animais , Metabolismo Energético , Humanos , Concentração de Íons de Hidrogênio , Metaboloma
7.
Amino Acids ; 50(6): 755-763, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29700653

RESUMO

Hydrogen sulfide (H2S), a metabolic end product synthesized by the microbiota from L-cysteine, has been shown to act at low micromolar concentration as a mineral oxidative substrate in colonocytes while acting as an inhibitor of oxygen consumption at higher luminal concentrations (65 µM and above). From the previous works showing that polyphenols can bind volatile sulfur compounds, we hypothesized that different dietary proanthocyanidin-containing polyphenol (PACs) plant extracts might modulate the inhibitory effect of H2S on colonocyte respiration. Using the model of human HT-29 Glc-/+ cell colonocytes, we show here that pre-incubation of 65 µM of the H2S donor NaHS with the different polyphenol extracts markedly reduced the inhibitory effect of NaHS on colonocyte oxygen consumption. Our studies on HT-29 Glc-/+ cell respiration performed in the absence or the presence of PACs reveal rapid binding of H2S with the sulfide-oxidizing unit and slower binding of H2S to the cytochrome c oxidase (complex IV of the respiratory chain). Despite acute inhibition of colonocyte respiration, no measurable effect of NaHS on paracellular permeability was recorded after 24 h treatment using the Caco-2 colonocyte monolayer model. The results are discussed in the context of the binding of excessive bacterial metabolites by unabsorbed dietary compounds and of the capacity of colonocytes to adapt to changing luminal environment.


Assuntos
Colo/metabolismo , Frutas/química , Sulfeto de Hidrogênio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proantocianidinas/farmacologia , Linhagem Celular Tumoral , Colo/citologia , Humanos , Extratos Vegetais/química , Proantocianidinas/química
8.
BMC Genomics ; 18(1): 116, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28137254

RESUMO

BACKGROUND: High-protein diets (HPD) alter the large intestine microbiota composition in association with a metabolic shift towards protein degradation. Some amino acid-derived metabolites produced by the colon bacteria are beneficial for the mucosa while others are deleterious at high concentrations. The aim of the present work was to define the colonic epithelial response to an HPD. Transcriptome profiling was performed on colonocytes of rats fed an HPD or an isocaloric normal-protein diet (NPD) for 2 weeks. RESULTS: The HPD downregulated the expression of genes notably implicated in pathways related to cellular metabolism, NF-κB signaling, DNA repair, glutathione metabolism and cellular adhesion in colonocytes. In contrast, the HPD upregulated the expression of genes related to cell proliferation and chemical barrier function. These changes at the mRNA level in colonocytes were not associated with detrimental effects of the HPD on DNA integrity (comet assay), epithelium renewal (quantification of proliferation and apoptosis markers by immunohistochemistry and western blot) and colonic barrier integrity (Ussing chamber experiments). CONCLUSION: The modifications of the luminal environment after an HPD were associated with maintenance of the colonic homeostasis that might be the result of adaptive processes in the epithelium related to the observed transcriptional regulations.


Assuntos
Colo/metabolismo , Dieta , Proteínas Alimentares/metabolismo , Mucosa Intestinal/metabolismo , Ração Animal , Animais , Análise por Conglomerados , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glutationa/metabolismo , Masculino , Ratos , Transdução de Sinais , Transcriptoma
9.
Amino Acids ; 49(1): 33-47, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27807658

RESUMO

Supplementation with whey and other dietary protein, mainly associated with exercise training, has been proposed to be beneficial for the elderly to gain and maintain lean body mass and improve health parameters. The main objective of this review is to examine the evidence provided by the scientific literature indicating benefit from such supplementation and to define the likely best strategy of protein uptake for optimal objectified results in the elderly. Overall, it appears that an intake of approximately 0.4 g protein/kg BW per meal thus representing 1.2-1.6 g protein/kg BW/day may be recommended taking into account potential anabolic resistance. The losses of the skeletal muscle mass contribute to lower the capacity to perform activities in daily living, emphasizing that an optimal protein consumption may represent an important parameter to preserve independence and contribute to health status. However, it is worth noting that the maximal intake of protein with no adverse effect is not known, and that high levels of protein intake is associated with increased transfer of protein to the colon with potential deleterious effects. Thus, it is important to examine in each individual case the benefit that can be expected from supplementation with whey protein, taking into account the usual protein dietary intake.


Assuntos
Envelhecimento/metabolismo , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Músculo Esquelético/metabolismo , Sarcopenia/dietoterapia , Proteínas do Soro do Leite/administração & dosagem , Atividades Cotidianas , Idoso , Envelhecimento/patologia , Aminoácidos Essenciais/administração & dosagem , Aminoácidos Essenciais/metabolismo , Composição Corporal , Proteínas Alimentares/metabolismo , Humanos , Músculo Esquelético/patologia , Recomendações Nutricionais , Treinamento Resistido , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/prevenção & controle , Proteínas do Soro do Leite/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 307(4): G459-70, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24970777

RESUMO

High-protein diets are used for body weight reduction, but consequences on the large intestine ecosystem are poorly known. Here, rats were fed for 15 days with either a normoproteic diet (NP, 14% protein) or a hyperproteic-hypoglucidic isocaloric diet (HP, 53% protein). Cecum and colon were recovered for analysis. Short- and branched-chain fatty acids, as well as lactate, succinate, formate, and ethanol contents, were markedly increased in the colonic luminal contents of HP rats (P < 0.05 or less) but to a lower extent in the cecal luminal content. This was associated with reduced concentrations of the Clostridium coccoides and C. leptum groups and Faecalibacterium prausnitzii in both the cecum and colon (P < 0.05 or less). In addition, the microbiota diversity was found to be higher in the cecum of HP rats but was lower in the colon compared with NP rats. In HP rats, the colonic and cecal luminal content weights were markedly higher than in NP rats (P < 0.001), resulting in similar butyrate, acetate, and propionate concentrations. Accordingly, the expression of monocarboxylate transporter 1 and sodium monocarboxylate transporter 1 (which is increased by higher butyrate concentration) as well as the colonocyte capacity for butyrate oxidation were not modified by the HP diet, whereas the amount of butyrate in feces was increased (P < 0.01). It is concluded that an increased bulk in the large intestine content following HP diet consumption allows maintenance in the luminal butyrate concentration and thus its metabolism in colonocytes despite modified microbiota composition and increased substrate availability.


Assuntos
Colo/metabolismo , Proteínas Alimentares/administração & dosagem , Conteúdo Gastrointestinal/microbiologia , Microbiota/efeitos dos fármacos , Animais , Butiratos/metabolismo , Ceco/metabolismo , Clostridium , Colo/citologia , Proteínas Alimentares/farmacologia , Metabolismo Energético , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Intestino Grosso/metabolismo , Masculino , Ratos , Ratos Wistar
11.
Amino Acids ; 44(2): 563-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22965636

RESUMO

Utilisation of microbial enzymes may represent an alternative strategy to the use of conventional pancreatin obtained from pig pancreas for the treatment of severe pancreatic insufficiency. In this study, we focused on the capacity of two microbial preparations for their capacity to digest alimentary proteins (caseins and soya proteins) in comparison with pancreatin. These microbial enzymatic preparations were found to be able to generate small, medium-size and larger polypeptides from caseins and soya proteins but were inactivated at pH 3.0. As determined by Liquid Chromatography-Mass Spectrometry analysis, microbial enzymes generated very different peptides from caseins when compared with peptides generated through pancreatin action. These microbial preparations were characterised by relatively low trypsin- and low carboxypeptidase-like activities but high chymotrypsin-like activities and strong capacity for cleavage of caseins at the methionine sites. Although the efficiency of these microbial preparations to increase the rate of absorption of nitrogen-containing compounds in severe pancreatic insufficiency remains to be tested in vivo, our in vitro data indicate proteolytic capacities of such preparations for alimentary protein digestion.


Assuntos
Actinomycetales/enzimologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Caseínas/química , Pancreatina/química , Peptídeo Hidrolases/química , Proteínas de Soja/química , Animais , Digestão , Concentração de Íons de Hidrogênio , Cinética , Suínos
12.
Pharmacol Res ; 69(1): 114-26, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23318949

RESUMO

Alimentary and endogenous proteins are mixed in the small intestinal lumen with the microbiota. Although experimental evidences suggest that the intestinal microbiota is able to incorporate and degrade some of the available amino acids, it appears that the microbiota is also able to synthesize amino acids raising the view that amino acid exchange between the microbiota and host can proceed in both directions. Although the net result of such exchanges remains to be determined, it is likely that a significant part of the amino acids recovered from the alimentary proteins are used by the microbiota. In the large intestine, where the density of bacteria is much higher than in the small intestine and the transit time much longer, the residual undigested luminal proteins and peptides can be degraded in amino acids by the microbiota. These amino acids cannot be absorbed to a significant extent by the colonic epithelium, but are precursors for the synthesis of numerous metabolic end products in reactions made by the microbiota. Among these products, some like short-chain fatty acids and organic acids are energy substrates for the colonic mucosa and several peripheral tissues while others like sulfide and ammonia can affect the energy metabolism of colonic epithelial cells. More work is needed to clarify the overall effects of the intestinal microbiota on nitrogenous compound metabolism and consequences on gut and more generally host health.

13.
Pharmacol Res ; 68(1): 95-107, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23183532

RESUMO

Alimentary and endogenous proteins are mixed in the small intestinal lumen with the microbiota. Although experimental evidences suggest that the intestinal microbiota is able to incorporate and degrade some of the available amino acids, it appears that the microbiota is also able to synthesize amino acids raising the view that amino acid exchange between the microbiota and host can proceed in both directions. Although the net result of such exchanges remains to be determined, it is likely that a significant part of the amino acids recovered from the alimentary proteins are used by the microbiota. In the large intestine, where the density of bacteria is much higher than in the small intestine and the transit time much longer, the residual undigested luminal proteins and peptides can be degraded in amino acids by the microbiota. These amino acids cannot be absorbed to a significant extent by the colonic epithelium, but are precursors for the synthesis of numerous metabolic end products in reactions made by the microbiota. Among these products, some like short-chain fatty acids and organic acids are energy substrates for the colonic mucosa and several peripheral tissues while others like sulfide and ammonia can affect the energy metabolism of colonic epithelial cells. More work is needed to clarify the overall effects of the intestinal microbiota on nitrogenous compound metabolism and consequences on gut and more generally host health.


Assuntos
Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Metagenoma , Nitrogênio/metabolismo , Animais , Bactérias/metabolismo , Metabolismo Energético , Humanos , Proteínas/metabolismo
14.
Front Endocrinol (Lausanne) ; 14: 1123364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229450

RESUMO

Endocrine functions of the gut are supported by a scattered population of cells, the enteroendocrine cells (EECs). EECs sense their environment to secrete hormones in a regulated manner. Distal EECs are in contact with various microbial compounds including hydrogen sulfide (H2S) which modulate cell respiration with potential consequences on EEC physiology. However, the effect of H2S on gut hormone secretion remains discussed and the importance of the modulation of cell metabolism on EEC functions remains to be deciphered. The aim of this project was to characterize the metabolic response of EECs to H2S and the consequences on GLP-1 secretion. We used cell line models of EECs to assess their capacity to metabolize H2S at low concentration and the associated modulation of cell respiration. We confirmed that like what is observed in colonocytes, colonic EEC model, NCI-h716 cell line rapidly metabolizes H2S at low concentrations, resulting in transient increased respiration. Higher concentrations of H2S inhibited this respiration, with the concentration threshold for inhibition depending on cell density. However, increased or inhibited oxidative respiration had little effect on acute GLP-1 secretion. Overall, we present here a first study showing the EEC capacity to detoxify low concentrations of H2S and used this model to acutely address the importance of cell respiration on secretory activity.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Células Enteroendócrinas/metabolismo , Colo/metabolismo , Fatores de Transcrição/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Respiração
15.
Free Radic Biol Med ; 205: 224-233, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37315703

RESUMO

Mucosal healing has emerged as a therapeutic goal to achieve lasting clinical remission in ulcerative colitis. Intestinal repair in response to inflammation presumably requires higher energy supplies for the restoration of intestinal barrier and physiological functions. However, epithelial energy metabolism during intestinal mucosal healing has been little studied, whereas inflammation-induced alterations have been reported in the main energy production site, the mitochondria. The aim of the present work was to assess the involvement of mitochondrial activity and the events influencing their function during spontaneous epithelial repair after colitis induction in mouse colonic crypts. The results obtained show adaptations of colonocyte metabolism during colitis to ensure maximal ATP production for supporting energetic demand by both oxidative phosphorylation and glycolysis in a context of decreased mitochondrial biogenesis and through mitochondrial function restoration during colon epithelial repair. In parallel, colitis-induced mitochondrial ROS production in colonic epithelial cells was rapidly associated with transient expression of GSH-related enzymes. Mitochondrial respiration in colonic crypts was markedly increased during both inflammatory and recovery phases despite decreased expression of several mitochondrial respiratory chain complex subunits after colitis induction. Rapid induction of mitochondrial fusion was associated with mitochondrial function restoration. Finally, in contrast with the kinetics expression of genes involved in mitochondrial oxidative metabolism and in glycolysis, the expression of glutaminase was markedly reduced in the colonic crypts both during colitis and repair phases. Overall, our data suggest that the epithelial repair after colitis induction is characterized by a rapid and transient increased capacity for mitochondrial ATP production in a context of apparent restoration of mitochondrial biogenesis and metabolic reorientation of energy production. The potential implication of energy production adaptations within colonic crypts to sustain mucosal healing in a context of altered fuel supply is discussed.


Assuntos
Colite , Animais , Camundongos , Colite/induzido quimicamente , Colite/genética , Colo/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo , Mucosa Intestinal/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
16.
Microorganisms ; 10(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35630374

RESUMO

The intestinal microbiota metabolic activity towards the available substrates generates myriad bacterial metabolites that may accumulate in the luminal fluid. Among them, indole and indole-related compounds are produced by specific bacterial species from tryptophan. Although indole-related compounds are, first, involved in intestinal microbial community communication, these molecules are also active on the intestinal mucosa, exerting generally beneficial effects in different experimental situations. After absorption, indole is partly metabolized in the liver into the co-metabolite indoxyl sulfate. Although some anti-inflammatory actions of indole on liver cells have been shown, indoxyl sulfate is a well-known uremic toxin that aggravates chronic kidney disease, through deleterious effects on kidney cells. Indoxyl sulfate is also known to provoke endothelial dysfunction. Regarding the central nervous system, emerging research indicates that indole at excessive concentrations displays a negative impact on emotional behavior. The indole-derived co-metabolite isatin appears, in pre-clinical studies, to accumulate in the brain, modulating brain function either positively or negatively, depending on the doses used. Oxindole, a bacterial metabolite that enters the brain, has shown deleterious effects on the central nervous system in experimental studies. Lastly, recent studies performed with indoxyl sulfate report either beneficial or deleterious effects depending once again on the dose used, with missing information on the physiological concentrations that are reaching the central nervous system. Any intervention aiming at modulating indole and indole-related compound concentrations in the biological fluids should crucially take into account the dual effects of these compounds according to the host tissues considered.

17.
Anim Nutr ; 9: 110-118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35573094

RESUMO

Apart from its obvious agronomic interest in feeding billions of people worldwide, the porcine species represents an irreplaceable experimental model for intestinal physiologists and nutritionists. In this review, we give an overview on the fate of proteins that are not fully digested in the pig small intestine, and thus are transferred into the large intestine. In the large intestine, dietary and endogenous proteins are converted to peptides and amino acids (AA) by the action of bacterial proteases and peptidases. AA, which cannot, except in the neonatal period, be absorbed to any significant level by the colonocytes, are used by the intestinal microbes for protein synthesis and for the production of numerous metabolites. Of note, the production of the AA-derived metabolites greatly depends on the amount of undigested polysaccharides in the pig's diet. The effects of these AA-derived bacterial metabolites on the pig colonic epithelium have not yet been largely studied. However, the available data, performed on colonic mucosa, isolated colonic crypts and colonocytes, indicate that some of them, like ammonia, butyrate, acetate, hydrogen sulfide (H2S), and p-cresol are active either directly or indirectly on energy metabolism in colonic epithelial cells. Further studies in that area will certainly gain from the utilization of the pig colonic organoid model, which allows for disposal of functional epithelial unities. Such studies will contribute to a better understanding of the potential causal links between diet-induced changes in the luminal concentrations of these AA-derived bacterial metabolites and effects on the colon epithelial barrier function and water/electrolyte absorption.

18.
Biochim Biophys Acta ; 1797(8): 1500-11, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20398623

RESUMO

Sulfide (H2S) is an inhibitor of mitochondrial cytochrome oxidase comparable to cyanide. In this study, poisoning of cells was observed with sulfide concentrations above 20 microM. Sulfide oxidation has been shown to take place in organisms/cells naturally exposed to sulfide. Sulfide is released as a result of metabolism of sulfur containing amino acids. Although in mammals sulfide exposure is not thought to be quantitatively important outside the colonic mucosa, our study shows that a majority of mammalian cells, by means of the mitochondrial sulfide quinone reductase (SQR), avidly consume sulfide as a fuel. The SQR activity was found in mitochondria isolated from mouse kidneys, liver, and heart. We demonstrate the precedence of the SQR over the mitochondrial complex I. This explains why the oxidation of the mineral substrate sulfide takes precedence over the oxidation of other (carbon-based) mitochondrial substrates. Consequently, if sulfide delivery rate remains lower than the SQR activity, cells maintain a non-toxic sulfide concentration (<1 microM) in their external environment. In the colonocyte cell line HT-29, sulfide oxidation provided the first example of reverse electron transfer in living cells, such a transfer increasing sulfide tolerance. However, SQR activity was not detected in brain mitochondria and neuroblastoma cells. Consequently, the neural tissue would be more sensitive to sulfide poisoning. Our data disclose new constraints concerning the emerging signaling role of sulfide.


Assuntos
Colo/metabolismo , Sulfeto de Hidrogênio/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Transporte de Elétrons , Células HT29 , Humanos , Camundongos , Mitocôndrias/metabolismo , NAD/metabolismo , Oxirredução , Quinona Redutases/genética , Quinona Redutases/fisiologia , Rotenona/farmacologia , Transdução de Sinais
19.
Am J Physiol Gastrointest Liver Physiol ; 299(5): G1030-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20689060

RESUMO

Hyperproteic diets are used in human nutrition to obtain body weight reduction. Although increased protein ingestion results in an increased transfer of proteins from the small to the large intestine, there is little information on the consequences of the use of such diets on the composition of large intestine content and on epithelial cell morphology and metabolism. Rats were fed for 15 days with either a normoproteic (NP, 14% protein) or a hyperproteic isocaloric diet (HP, 53% protein), and absorptive colonocytes were observed by electron microscopy or isolated for enzyme activity studies. The colonic luminal content was recovered for biochemical analysis. Absorbing colonocytes were characterized by a 1.7-fold reduction in the height of the brush-border membranes (P = 0.0001) after HP diet consumption when compared with NP. This coincided in the whole colon content of HP animals with a 1.8-fold higher mass content (P = 0.0020), a 2.2-fold higher water content (P = 0.0240), a 5.2-fold higher protease activity (P = 0.0104), a 5.5-fold higher ammonia content (P = 0.0008), and a more than twofold higher propionate, valerate, isobutyrate, and isovalerate content (P < 0.05). The basal oxygen consumption of colonocytes was similar in the NP and HP groups, but ammonia was found to provoke a dose-dependent decrease of oxygen consumption in the isolated absorbing colonocytes. The activity of glutamine synthetase (which condenses ammonia and glutamate) was found to be much higher in colonocytes than in small intestine enterocytes and was 1.6-fold higher (P = 0.0304) in colonocytes isolated from HP animals than NP. Glutaminase activity remained unchanged. Thus hyperproteic diet ingestion causes marked changes both in the luminal environment of colonocytes and in the characteristics of these cells, demonstrating that hyperproteic diet interferes with colonocyte metabolism and morphology. Possible causal relationships between energy metabolism, reduced height of colonocyte brush-border membranes, and reduced water absorption are discussed.


Assuntos
Forma Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Proteínas Alimentares/metabolismo , Células Epiteliais/efeitos dos fármacos , Conteúdo Gastrointestinal/efeitos dos fármacos , Amônia/análise , Amônia/farmacologia , Animais , Água Corporal , Colo/metabolismo , Proteínas Alimentares/administração & dosagem , Células Epiteliais/fisiologia , Conteúdo Gastrointestinal/química , Glutamato-Amônia Ligase/metabolismo , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
20.
Amino Acids ; 39(2): 335-47, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20020161

RESUMO

Hydrogen sulfide (H(2)S) is present in the lumen of the human large intestine at millimolar concentrations. However, the concentration of free (unbound) sulfide is in the micromolar range due to a large capacity of fecal components to bind the sulfide. H(2)S can be produced by the intestinal microbiota from alimentary and endogenous sulfur-containing compounds including amino acids. At excessive concentration, H(2)S is known to severely inhibit cytochrome c oxidase, the terminal oxidase of the mitochondrial electron transport chain, and thus mitochondrial oxygen (O(2)) consumption. However, the concept that sulfide is simply a metabolic troublemaker toward colonic epithelial cells has been challenged by the discovery that micromolar concentration of H(2)S is able to increase the cell respiration and to energize mitochondria allowing these cells to detoxify and to recover energy from luminal sulfide. The main product of H(2)S metabolism by the colonic mucosa is thiosulfate. The enzymatic activities involved in sulfide oxidation by the colonic epithelial cells appear to be sulfide quinone oxidoreductase considered as the first and rate-limiting step followed presumably by the action of sulfur dioxygenase and rhodanese. From clinical studies with human volunteers and experimental works with rodents, it appears that H(2)S can exert mostly pro- but also anti-inflammatory effects on the colonic mucosa. From the available data, it is tempting to propose that imbalance between the luminal concentration of free sulfide and the capacity of colonic epithelial cells to metabolize this compound will result in an impairment of the colonic epithelial cell O(2) consumption with consequences on the process of mucosal inflammation. In addition, endogenously produced sulfide is emerging as a prosecretory neuromodulator and as a relaxant agent toward the intestinal contractibility. Lastly, sulfide has been recently described as an agent involved in nociception in the large intestine although, depending on the experimental design, both pro- and anti-nociceptive effects have been reported.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Intestino Grosso/metabolismo , Sulfetos/metabolismo , Animais , Bactérias/metabolismo , Colite Ulcerativa/induzido quimicamente , Colo/metabolismo , Colo/microbiologia , Cistationina gama-Liase/metabolismo , Metabolismo Energético , Fezes/química , Humanos , Inativação Metabólica , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/etiologia , Intestino Grosso/microbiologia , Neurotransmissores/fisiologia , Dor/fisiopatologia , Sulfetos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa