Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
EMBO J ; 35(3): 319-34, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26742780

RESUMO

Phosphorylation of translation initiation factor 2α (eIF2α) attenuates global protein synthesis but enhances translation of activating transcription factor 4 (ATF4) and is a crucial evolutionarily conserved adaptive pathway during cellular stresses. The serine-threonine protein phosphatase 1 (PP1) deactivates this pathway whereas prolonging eIF2α phosphorylation enhances cell survival. Here, we show that the reactive oxygen species-generating NADPH oxidase-4 (Nox4) is induced downstream of ATF4, binds to a PP1-targeting subunit GADD34 at the endoplasmic reticulum, and inhibits PP1 activity to increase eIF2α phosphorylation and ATF4 levels. Other PP1 targets distant from the endoplasmic reticulum are unaffected, indicating a spatially confined inhibition of the phosphatase. PP1 inhibition involves metal center oxidation rather than the thiol oxidation that underlies redox inhibition of protein tyrosine phosphatases. We show that this Nox4-regulated pathway robustly enhances cell survival and has a physiologic role in heart ischemia-reperfusion and acute kidney injury. This work uncovers a novel redox signaling pathway, involving Nox4-GADD34 interaction and a targeted oxidative inactivation of the PP1 metal center, that sustains eIF2α phosphorylation to protect tissues under stress.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , NADPH Oxidases/metabolismo , Proteína Fosfatase 1/metabolismo , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Transdução de Sinais , Animais , Linhagem Celular , Humanos , NADPH Oxidase 4 , Oxirredução
2.
J Mol Cell Cardiol ; 79: 54-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450615

RESUMO

Adult mammalian cardiomyocytes have a very limited capacity to proliferate, and consequently the loss of cells after cardiac stress promotes heart failure. Recent evidence suggests that administration of hydrogen peroxide (H2O2), can regulate redox-dependent signalling pathway(s) to promote cardiomyocyte proliferation in vitro, but the potential relevance of such a pathway in vivo has not been tested. We have generated a transgenic (Tg) mouse model in which the H2O2-generating enzyme, NADPH oxidase 4 (Nox4), is overexpressed within the postnatal cardiomyocytes, and observed that the hearts of 1-3week old Tg mice pups are larger in comparison to wild type (Wt) littermate controls. We demonstrate that the cardiomyocytes of Tg mouse pups have increased cell cycling capacity in vivo as determined by incorporation of 5-bromo-2'-deoxyuridine. Further, microarray analyses of the transcriptome of these Tg mouse hearts suggested that the expression of cyclin D2 is significantly increased. We investigated the molecular mechanisms which underlie this more proliferative phenotype in isolated neonatal rat cardiomyocytes (NRCs) in vitro, and demonstrate that Nox4 overexpression mediates an H2O2-dependent activation of the ERK1/2 signalling pathway, which in turn phosphorylates and activates the transcription factor c-myc. This results in a significant increase in cyclin D2 expression, which we show to be mediated, at least in part, by cis-acting c-myc binding sites within the proximal cyclin D2 promoter. Overexpression of Nox4 in NRCs results in an increase in their proliferative capacity that is ablated by the silencing of cyclin D2. We further demonstrate activation of the ERK1/2 signalling pathway, increased phosphorylation of c-myc and significantly increased expression of cyclin D2 protein in the Nox4 Tg hearts. We suggest that this pathway acts to maintain the proliferative capacity of cardiomyocytes in Nox4 Tg pups in vivo and so delays their exit from the cell cycle after birth.


Assuntos
Ciclo Celular , Ciclina D2/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Animais , Animais Recém-Nascidos , Sequência de Bases , Sítios de Ligação/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Ciclo Celular/genética , Proliferação de Células , Sequência Conservada/genética , Ciclina D2/metabolismo , Camundongos Transgênicos , Dados de Sequência Molecular , Miocárdio/metabolismo , Miocárdio/patologia , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , Oxirredução , Fosforilação , Regiões Promotoras Genéticas/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/genética
3.
Arterioscler Thromb Vasc Biol ; 33(4): e104-12, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23393389

RESUMO

OBJECTIVE: Reactive oxygen species-generating nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase proteins (Noxs) are involved in cell differentiation, migration, and apoptosis. Nox4 is unique among Noxs in being constitutively active, and its subcellular localization may therefore be particularly important. In this study, we identified and characterized a novel nuclear-localized 28-kDa splice variant of Nox4 in vascular cells. APPROACH AND RESULTS: Nox4 immunoreactivity was noted in the nucleus and nucleolus of vascular smooth muscle cells and multiple other cell types by confocal microscopy. Cell fractionation, sequence analyses, and siRNA studies indicated that the nuclear-localized Nox4 is a 28-kDa splice variant, Nox4D, which lacks putative transmembrane domains. Nox4D overexpression resulted in significant NADPH-dependent reactive oxygen species production as detected by several different methods and caused increased phosphorylation of extracellular-signal-regulated kinase1/2 and the nuclear transcription factor Elk-1. Overexpression of Nox4D could also induce DNA damage as assessed by γ-H2AX phosphorylation. These effects were inhibited by a single amino acid substitution in the Nox4D NADPH-binding region. CONCLUSIONS: Nox4D is a nuclear-localized and functionally active splice variant of Nox4 that may have important pathophysiologic effects through modulation of nuclear signaling and DNA damage.


Assuntos
Núcleo Celular/enzimologia , Fibroblastos/enzimologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos Cardíacos/enzimologia , Miócitos de Músculo Liso/enzimologia , NADPH Oxidases/metabolismo , Animais , Dano ao DNA , Ativação Enzimática , Imunofluorescência , Células HEK293 , Histonas/metabolismo , Humanos , Microscopia Confocal , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Peso Molecular , Mutagênese Sítio-Dirigida , NADPH Oxidase 4 , NADPH Oxidases/genética , Oxirredução , Fosforilação , Cultura Primária de Células , Isoformas de Proteínas , Interferência de RNA , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transfecção
4.
Proc Natl Acad Sci U S A ; 107(42): 18121-6, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921387

RESUMO

Cardiac failure occurs when the heart fails to adapt to chronic stresses. Reactive oxygen species (ROS)-dependent signaling is implicated in cardiac stress responses, but the role of different ROS sources remains unclear. Here we report that NADPH oxidase-4 (Nox4) facilitates cardiac adaptation to chronic stress. Unlike other Nox proteins, Nox4 activity is regulated mainly by its expression level, which increases in cardiomyocytes under stresses such as pressure overload or hypoxia. To investigate the functional role of Nox4 during the cardiac response to stress, we generated mice with a genetic deletion of Nox4 or a cardiomyocyte-targeted overexpression of Nox4. Basal cardiac function was normal in both models, but Nox4-null animals developed exaggerated contractile dysfunction, hypertrophy, and cardiac dilatation during exposure to chronic overload whereas Nox4-transgenic mice were protected. Investigation of mechanisms underlying this protective effect revealed a significant Nox4-dependent preservation of myocardial capillary density after pressure overload. Nox4 enhanced stress-induced activation of cardiomyocyte hypoxia inducible factor 1 and the release of vascular endothelial growth factor, resulting in increased paracrine angiogenic activity. These data indicate that cardiomyocyte Nox4 is a unique inducible regulator of myocardial angiogenesis, a key determinant of cardiac adaptation to overload stress. Our results also have wider relevance to the use of nonspecific antioxidant approaches in cardiac disease and may provide an explanation for the failure of such strategies in many settings.


Assuntos
Coração/fisiopatologia , NADPH Oxidases/metabolismo , Neovascularização Fisiológica , Estresse Fisiológico , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
J Biol Chem ; 286(15): 13304-13, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21343298

RESUMO

In contrast to the NADPH oxidases Nox1 and Nox2, which generate superoxide (O(2)(·-)), Nox4 produces hydrogen peroxide (H(2)O(2)). We constructed chimeric proteins and mutants to address the protein region that specifies which reactive oxygen species is produced. Reactive oxygen species were measured with luminol/horseradish peroxidase and Amplex Red for H(2)O(2) versus L-012 and cytochrome c for O(2)(·-). The third extracytosolic loop (E-loop) of Nox4 is 28 amino acids longer than that of Nox1 or Nox2. Deletion of E-loop amino acids only present in Nox4 or exchange of the two cysteines in these stretches switched Nox4 from H(2)O(2) to O(2)(·-) generation while preserving expression and intracellular localization. In the presence of an NO donor, the O(2)()-producing Nox4 mutants, but not wild-type Nox4, generated peroxynitrite, excluding artifacts of the detection system as the apparent origin of O(2)(·-). In Cos7 cells, in which Nox4 partially localizes to the plasma membrane, an antibody directed against the E-loop decreased H(2)O(2) but increased O(2)(·-) formation by Nox4 without affecting Nox1-dependent O(2)(·-) formation. The E-loop of Nox4 but not Nox1 and Nox2 contains a highly conserved histidine that could serve as a source for protons to accelerate spontaneous dismutation of superoxide to form H(2)O(2). Mutation of this but not of four other conserved histidines also switched Nox4 from H(2)O(2) to O(2)(·-) formation. Thus, H(2)O(2) formation is an intrinsic property of Nox4 that involves its E-loop. The structure of the E-loop may hinder O(2)(·-) egress and/or provide a source for protons, allowing dismutation to form H(2)O(2).


Assuntos
Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Mutação , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/genética , Doadores de Óxido Nítrico/farmacologia , Ácido Peroxinitroso/genética , Ácido Peroxinitroso/metabolismo , Estrutura Secundária de Proteína , Superóxidos/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 31(6): 1368-76, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21415386

RESUMO

OBJECTIVE: Increased reactive oxygen species (ROS) production is involved in the pathophysiology of endothelial dysfunction. NADPH oxidase-4 (Nox4) is a ROS-generating enzyme expressed in the endothelium, levels of which increase in pathological settings. Recent studies indicate that it generates predominantly hydrogen peroxide (H(2)O(2)), but its role in vivo remains unclear. METHODS AND RESULTS: We generated transgenic mice with endothelium-targeted Nox4 overexpression (Tg) to study the in vivo role of Nox4. Tg demonstrated significantly greater acetylcholine- or histamine-induced vasodilatation than wild-type littermates. This resulted from increased H(2)O(2) production and H(2)O(2)-induced hyperpolarization but not altered nitric oxide bioactivity. Tg had lower systemic blood pressure than wild-type littermates, which was normalized by antioxidants. CONCLUSION: Endothelial Nox4 exerts potentially beneficial effects on vasodilator function and blood pressure that are attributable to H(2)O(2) production. These effects contrast markedly with those reported for Nox1 and Nox2, which involve superoxide-mediated inactivation of nitric oxide. Our results suggest that therapeutic strategies to modulate ROS production in vascular disease may need to separately target individual Nox isoforms.


Assuntos
Pressão Sanguínea , Endotélio Vascular/enzimologia , NADPH Oxidases/fisiologia , Vasodilatação , Angiotensina II/farmacologia , Animais , Endotélio Vascular/fisiologia , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , NADPH Oxidase 4 , Óxido Nítrico/fisiologia , Espécies Reativas de Oxigênio/metabolismo
7.
Cardiovasc Res ; 117(1): 178-187, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821410

RESUMO

AIMS: Chronic pressure or volume overload induce concentric vs. eccentric left ventricular (LV) remodelling, respectively. Previous studies suggest that distinct signalling pathways are involved in these responses. NADPH oxidase-4 (Nox4) is a reactive oxygen species-generating enzyme that can limit detrimental cardiac remodelling in response to pressure overload. This study aimed to assess its role in volume overload-induced remodelling. METHODS AND RESULTS: We compared the responses to creation of an aortocaval fistula (Shunt) to induce volume overload in Nox4-null mice (Nox4-/-) vs. wild-type (WT) littermates. Induction of Shunt resulted in a significant increase in cardiac Nox4 mRNA and protein levels in WT mice as compared to Sham controls. Nox4-/- mice developed less eccentric LV remodelling than WT mice (echocardiographic relative wall thickness: 0.30 vs. 0.27, P < 0.05), with less LV hypertrophy at organ level (increase in LV weight/tibia length ratio of 25% vs. 43%, P < 0.01) and cellular level (cardiomyocyte cross-sectional area: 323 µm2 vs. 379 µm2, P < 0.01). LV ejection fraction, foetal gene expression, interstitial fibrosis, myocardial capillary density, and levels of myocyte apoptosis after Shunt were similar in the two genotypes. Myocardial phospho-Akt levels were increased after induction of Shunt in WT mice, whereas levels decreased in Nox4-/- mice (+29% vs. -21%, P < 0.05), associated with a higher level of phosphorylation of the S6 ribosomal protein (S6) and the eIF4E-binding protein 1 (4E-BP1) in WT compared to Nox4-/- mice. We identified that Akt activation in cardiac cells is augmented by Nox4 via a Src kinase-dependent inactivation of protein phosphatase 2A. CONCLUSION: Endogenous Nox4 is required for the full development of eccentric cardiac hypertrophy and remodelling during chronic volume overload. Nox4-dependent activation of Akt and its downstream targets S6 and 4E-BP1 may be involved in this effect.


Assuntos
Hipertrofia Ventricular Esquerda/enzimologia , Miócitos Cardíacos/enzimologia , NADPH Oxidase 4/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Derivação Arteriovenosa Cirúrgica , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/genética , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 28(7): 1347-54, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18467643

RESUMO

OBJECTIVE: The NADPH oxidase isoforms Nox2 and Nox4 are coexpressed in many cell types and are implicated in agonist-stimulated redox-sensitive signal transduction. We compared the involvement of Nox2 versus Nox4 in redox-sensitive protein kinase activation after agonist stimulation. METHODS AND RESULTS: We transfected HEK293 cells with Nox2 or Nox4 and compared ROS production and activation of mitogen activated protein kinases (MAPKs), Akt, and GSK3beta after acute agonist stimulation. Nox4 overexpression substantially increased basal ROS generation whereas ROS generation in response to angiotensin II and tumor necrosis factor (TNF)alpha was enhanced in Nox2-overexpressing cells. Nox4 overexpression induced basal activation of ERK1/2 and JNK whereas Nox2-transfected cells showed a modest increase in p38MAPK activation. After angiotensin II or TNFalpha treatment, JNK activation was augmented in Nox2 but not Nox4-transfected cells, whereas insulin augmented phosphorylation of p38MAPK, Akt, and GSK3beta specifically in Nox4-overexpressing cells and JNK specifically in Nox2-overexpressing cells. CONCLUSIONS: These data indicate that Nox2 and Nox4 exhibit distinctive patterns of acute activation by angiotensin II, TNFalpha, and insulin and regulate the activation of distinct protein kinases.


Assuntos
Angiotensina II/metabolismo , Células Endoteliais/enzimologia , Insulina/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anticorpos , Células COS , Catalase/farmacologia , Chlorocebus aethiops , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática , Sequestradores de Radicais Livres/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Oxirredução , Fosforilação , Polietilenoglicóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/farmacologia , Transfecção
9.
Antioxid Redox Signal ; 10(6): 1089-100, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18315494

RESUMO

Endothelial activation refers to a specific change in endothelial phenotype, characterized most notably by an increase in endothelial-leukocyte interactions and permeability, which is pivotal to inflammatory responses in both physiologic and pathologic settings. An increasing body of evidence indicates an important role for reactive oxygen species (ROS)-mediated modulation of signal-transduction pathways in many of the processes involved in endothelial activation. ROS generated by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes may be especially important in this regard. We discuss the evidence implicating redox signaling pathways in the molecular and cellular processes underlying endothelial activation and the role in cardiovascular diseases, and also provide a detailed description of NADPH oxidase regulation in endothelial cells, in view of its likely importance in this context.


Assuntos
Endotélio Vascular/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Doenças Cardiovasculares/etiologia , Endotélio Vascular/citologia , Endotélio Vascular/enzimologia , Humanos , NADPH Oxidases/metabolismo , Transdução de Sinais
10.
Dev Cell ; 44(3): 326-336.e3, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29396114

RESUMO

Mechanical properties are cues for many biological processes in health or disease. In the heart, changes to the extracellular matrix composition and cross-linking result in stiffening of the cellular microenvironment during development. Moreover, myocardial infarction and cardiomyopathies lead to fibrosis and a stiffer environment, affecting cardiomyocyte behavior. Here, we identify that single cardiomyocyte adhesions sense simultaneous (fast oscillating) cardiac and (slow) non-muscle myosin contractions. Together, these lead to oscillating tension on the mechanosensitive adaptor protein talin on substrates with a stiffness of healthy adult heart tissue, compared with no tension on embryonic heart stiffness and continuous stretching on fibrotic stiffness. Moreover, we show that activation of PKC leads to the induction of cardiomyocyte hypertrophy in a stiffness-dependent way, through activation of non-muscle myosin. Finally, PKC and non-muscle myosin are upregulated at the costameres in heart disease, indicating aberrant mechanosensing as a contributing factor to long-term remodeling and heart failure.


Assuntos
Matriz Extracelular/metabolismo , Contração Muscular/fisiologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Miosinas/metabolismo , Talina/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miosinas/genética , Miosina não Muscular Tipo IIA , Ratos , Talina/genética
11.
Circulation ; 113(9): 1235-43, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16505175

RESUMO

BACKGROUND: Nonenzymatic glycation that results in the production of early-glycation Amadori-modified proteins and advanced-glycation end products may be important in the pathogenesis of diabetic complications. However, the effects of early-glycated proteins, such as glycated serum albumin (Gly-BSA), are poorly defined. In this study, we investigated the effects of Gly-BSA on reactive oxygen species (ROS) production by cardiomyocytes. METHODS AND RESULTS: Cultured neonatal rat cardiomyocytes were incubated with Gly-BSA or vehicle (bovine serum albumin [BSA]) for up to 48 hours. Gly-BSA dose-dependently increased in situ ROS production (whole-cell dichlorodihydrofluorescein fluorescence), with an optimum effect at 400 microg/mL after 24-hour incubation (152+/-10% versus BSA 100%; P<0.01). Treatment with the NADPH oxidase inhibitor apocynin, a Nox2 (gp91phox) antisense oligonucleotide (Nox2 AS), or the peptide gp91ds-tat significantly reduced Gly-BSA-induced ROS production at 24 hours (68.5+/-2.2%, 61.4+/-8.3%, and 53.2+/-5.4% reduction, respectively). NADPH-dependent activity in cell homogenates was also significantly increased by Gly-BSA at 24 hours (161+/-8% versus BSA) and was inhibited by diphenyleneiodonium, apocynin, NOX2AS, and the protein kinase C inhibitor bisindolylmaleimide I but not by a nitric oxide synthase inhibitor or mitochondrial inhibitors. Furthermore, bisindolylmaleimide I prevented Gly-BSA-stimulated Rac1 translocation, an essential step for NADPH oxidase activation. Gly-BSA-induced increases in ROS were associated with apocynin-inhibitable nuclear translocation of nuclear factor-kappaB and an increase in atrial natriuretic factor mRNA expression. CONCLUSIONS: Gly-BSA stimulates cardiomyocyte ROS production through a protein kinase C-dependent activation of a Nox2-containing NADPH oxidase, which results in nuclear factor-kappaB activation and upregulation of atrial natriuretic factor mRNA. These findings suggest that early-glycated Amadori products may play a role in the development of diabetic heart disease.


Assuntos
Glicoproteínas/farmacologia , Miócitos Cardíacos/metabolismo , NADPH Oxidases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Fator Natriurético Atrial/genética , Células Cultivadas , Complicações do Diabetes , Cardiopatias/etiologia , Humanos , Glicoproteínas de Membrana , Miócitos Cardíacos/citologia , NADPH Oxidase 2 , NF-kappa B/metabolismo , Ratos , Soroalbumina Bovina/farmacologia , Regulação para Cima
12.
JACC Basic Transl Sci ; 2(6): 688-698, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29445778

RESUMO

The reactive oxygen species-generating enzyme NADPH oxidase 4 (Nox4) is up-regulated in the heart after myocardial infarction (MI). Mice with cardiomyocyte-targeted Nox4 overexpression (TG) displayed increased macrophages in the heart at baseline, with skewing toward an M2 phenotype compared with wild-type controls (WT). After MI, TG mice had a higher proportion of M2 macrophages along with higher survival, decreased cardiac remodeling, and better contractile function than wild-type mice. The post-MI increase in cardiac matrix metalloproteinase-2 activity was substantially blunted in TG mice. These results indicate that cardiomyocyte Nox4 modulates macrophage polarization toward an M2 phenotype, resulting in improved post-MI survival and remodeling, likely through the attenuation of cardiac matrix metalloproteinase-2 activity.

13.
Free Radic Biol Med ; 89: 419-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26427883

RESUMO

Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm(2)) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation.


Assuntos
Peróxido de Hidrogênio/farmacologia , NADPH Oxidases/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Estresse Mecânico , Ácidos Sulfênicos/química , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Western Blotting , Bovinos , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Imunofluorescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 4 , Óxido Nítrico/metabolismo , Oxidantes/farmacologia , Oxirredução , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxidos
14.
Free Radic Biol Med ; 89: 918-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26472193

RESUMO

Glutathione is the major intracellular redox buffer in the liver and is critical for hepatic detoxification of xenobiotics and other environmental toxins. Hepatic glutathione is also a major systemic store for other organs and thus impacts on pathologies such as Alzheimer's disease, Sickle Cell Anaemia and chronic diseases associated with aging. Glutathione levels are determined in part by the availability of cysteine, generated from homocysteine through the transsulfuration pathway. The partitioning of homocysteine between remethylation and transsulfuration pathways is known to be subject to redox-dependent regulation, but the underlying mechanisms are not known. An association between plasma Hcy and a single nucleotide polymorphism within the NADPH oxidase 4 locus led us to investigate the involvement of this reactive oxygen species- generating enzyme in homocysteine metabolism. Here we demonstrate that NADPH oxidase 4 ablation in mice results in increased flux of homocysteine through the betaine-dependent remethylation pathway to methionine, catalysed by betaine-homocysteine-methyltransferase within the liver. As a consequence NADPH oxidase 4-null mice display significantly lowered plasma homocysteine and the flux of homocysteine through the transsulfuration pathway is reduced, resulting in lower hepatic cysteine and glutathione levels. Mice deficient in NADPH oxidase 4 had markedly increased susceptibility to acetaminophen-induced hepatic injury which could be corrected by administration of N-acetyl cysteine. We thus conclude that under physiological conditions, NADPH oxidase 4-derived reactive oxygen species is a regulator of the partitioning of the metabolic flux of homocysteine, which impacts upon hepatic cysteine and glutathione levels and thereby upon defence against environmental toxins.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Homocisteína/metabolismo , Hepatopatias/prevenção & controle , Fígado/metabolismo , NADPH Oxidases/fisiologia , Animais , Betaína/metabolismo , Western Blotting , Células Cultivadas , Cisteína/metabolismo , Feminino , Glutationa/metabolismo , Células Hep G2 , Humanos , Técnicas Imunoenzimáticas , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias/etiologia , Metionina/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 4 , Espécies Reativas de Oxigênio/metabolismo , S-Adenosilmetionina/metabolismo
15.
Dev Growth Differ ; 36(3): 333-340, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37281828

RESUMO

The possibility of occurrence of laminin binding proteins in cardiac tissue under different stages of growth was examined by affinity chromatography of the soluble fraction of human fetal myocardial plasma membrane over Ln-Sepharose. A 67 kDa protein was isolated by elution with glycine/HCl buffer containing 1 M NaCl and visualized as a coomassie stainable band on SDS gel electrophoresis under reducing conditions. Dot blot assays of the radioiodinated protein revealed the binding of 67 kDa protein with high affinity to laminin in a cation independent manner. This protein appears to be present in relatively higher amounts in tissues from early stage fetus. The occurrence of cation dependent laminin binding proteins was also examined by affinity chromatography. Electrophoresis of the EDTA eluate under reducing conditions followed by silver staining showed two prominent bands with average molecular size 130 and 174 kDa which under non-reducing conditions appeared as two bands with average molecular weight of 115 and 135 kDa. Using radioiodinated protein in dot blot assays, its binding to Ln was found to be maximum in the presence of Mn++ ions. Immunoblotting using anti-ß1 integrin antibodies showed that 115 kDa protein is a ß1 integrin suggesting the possibility of this protein belonging to the integrin group of receptors. The occurrence of multiple laminin binding proteins and the relative abundance of one of these proteins viz. the 67 kDa protein during early stages than in late stage tussue suggest a possible role for these proteins in cellular interactions with laminin during myocardial tissue development.

16.
PeerJ ; 2: e323, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24711972

RESUMO

The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by aggregation and misfolding of the ataxin-1 protein. While the pathology correlates with mutations that lead to expansion of a polyglutamine tract in the protein, other regions contribute to the aggregation process as also non-expanded ataxin-1 is intrinsically aggregation-prone and forms nuclear foci in cell. Here, we have used a combined approach based on FRET analysis, confocal microscopy and in vitro techniques to map aggregation-prone regions other than polyglutamine and to establish the importance of dimerization in self-association/foci formation. Identification of aggregation-prone regions other than polyglutamine could greatly help the development of SCA1 treatment more specific than that based on targeting the low complexity polyglutamine region.

18.
Sci Rep ; 2: 919, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23213356

RESUMO

Anomalous expansion of a polymorphic tract in Ataxin-1 causes the autosomal dominant spinocerebellar ataxia type 1. In addition to polyglutamine expansion, requirements for development of pathology are phosphorylation of serine 776 in Ataxin-1 and nuclear localization of the protein. The phosphorylation state of serine 776 is also crucial for selection of the Ataxin-1 multiple partners. Here, we have used FRET for an in cell study of the interaction of Ataxin-1 with the spliceosome-associated U2AF65 and the adaptor 14-3-3 proteins. Using wild-type Ataxin-1 and Ser776 mutants to a phosphomimetic aspartate and to alanine, we show that U2AF65 binds Ataxin-1 in a Ser776 phosphorylation independent manner whereas 14-3-3 interacts with phosphorylated wild-type Ataxin-1 but not with the mutants. These results indicate that Ser776 acts as the molecular switch that discriminates between normal and aberrant function and that phosphomimetics is not a generally valid approach whose applicability should be carefully validated.


Assuntos
Proteínas 14-3-3/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Serina/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Animais , Ataxina-1 , Ataxinas , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Genes Reporter , Humanos , Mutação/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Conformação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Serina/química , Serina/genética , Fator de Processamento U2AF
19.
Free Radic Biol Med ; 53(4): 842-53, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22749956

RESUMO

Nox4 is a hydrogen peroxide-producing NADPH oxidase highly expressed in the kidney which has been linked to epithelial cell injury and diabetic-induced cellular dysfunction in cultured cells. The role of the enzyme for renal pathology in vivo, however, is unclear. To address this, three experimental animal models of renal injury (streptozotocin diabetes I, unilateral ureteral ligation (UUO), and 5/6 nephrectomy (5/6Nx)) were studied in either Nox4-inducible (Nox4(*/*)) or constitutive knockout (Nox4(-/-)) mice. Nox4 contributed more than 80% of diphenylene iodonium-sensitive H(2)O(2) formation of freshly isolated tubules determined by Amplex Red assay. In streptozotocin diabetes, acute deletion of Nox4 by tamoxifen-activated cre-recombinase increased albuminuria, whereas matrix deposition was similar between WT and Nox4(*/*) mice. Interestingly, renal Nox4 expression, mainly localized to tubular cells, decreased in the course of diabetes and this was not associated with a compensatory upregulation of Nox1 or Nox2. In the UUO model, renal expression of ICAM1, connective tissue growth factor, and fibronectin were higher in kidneys of Nox4(*/*) than control mice. Also in this model, levels of Nox4 decreased in the course of the disease. In the 5/6Nx model, which was performed in SV129 and SV129-Nox4(-/-) mice, no difference in the development of hypertension and albuminuria was found between the strains. Collectively, the first in vivo data of the kidney do not support the view that Nox4 is a main driver of renal disease. It rather appears that under specific conditions Nox4 may even slightly limit injury and disease progression.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , NADPH Oxidases/fisiologia , Albuminúria/metabolismo , Albuminúria/fisiopatologia , Albuminúria/urina , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/urina , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/urina , Modelos Animais de Doenças , Fibrose , Deleção de Genes , Taxa de Filtração Glomerular , Peróxido de Hidrogênio/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Rim/patologia , Rim/fisiopatologia , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Nefrectomia , Insuficiência Renal/metabolismo , Insuficiência Renal/fisiopatologia , Insuficiência Renal/urina , Obstrução Ureteral/metabolismo , Obstrução Ureteral/fisiopatologia , Obstrução Ureteral/urina
20.
Free Radic Biol Med ; 50(7): 777-93, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21236334

RESUMO

The heart has complex mechanisms that facilitate the maintenance of an oxygen supply-demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation-contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved-where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases.


Assuntos
Acoplamento Excitação-Contração/fisiologia , Miócitos Cardíacos/fisiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Humanos , Hipertrofia/metabolismo , Hipertrofia/fisiopatologia , Camundongos , Mitocôndrias/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , NADPH Oxidases/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Coelhos , Ratos , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa