Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Chem Rev ; 122(15): 12864-12903, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35731958

RESUMO

Hemostatic biomaterials show great promise in wound control for the treatment of uncontrolled bleeding associated with damaged tissues, traumatic wounds, and surgical incisions. A surge of interest has been directed at boosting hemostatic properties of bioactive materials via mechanisms triggering the coagulation cascade. A wide variety of biocompatible and biodegradable materials has been applied to the design of hemostatic platforms for rapid blood coagulation. Recent trends in the design of hemostatic agents emphasize chemical conjugation of charged moieties to biomacromolecules, physical incorporation of blood-coagulating agents in biomaterials systems, and superabsorbing materials in either dry (foams) or wet (hydrogel) states. In addition, tough bioadhesives are emerging for efficient and physical sealing of incisions. In this Review, we highlight the biomacromolecular design approaches adopted to develop hemostatic bioactive materials. We discuss the mechanistic pathways of hemostasis along with the current standard experimental procedures for characterization of the hemostasis efficacy. Finally, we discuss the potential for clinical translation of hemostatic technologies, future trends, and research opportunities for the development of next-generation surgical materials with hemostatic properties for wound management.


Assuntos
Hemostáticos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Coagulação Sanguínea , Hemorragia/tratamento farmacológico , Hemostasia , Hemostáticos/química , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Humanos
2.
Chem Soc Rev ; 51(21): 9127-9173, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36269075

RESUMO

Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion via covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.


Assuntos
Adesivos Teciduais , Adesivos Teciduais/química , Materiais Biocompatíveis/química , Hidrogéis/química , Adesivos , Polímeros
3.
Int Urogynecol J ; 33(8): 2223-2232, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34999912

RESUMO

INTRODUCTION AND HYPOTHESIS: The aims of this study were to evaluate the effectiveness of gelatin methacryloyl as an adjunct to anterior vaginal wall injury with or without vaginal mesh compared with traditional repair with suture. METHODS: Virginal cycling Hartley strain guinea pigs (n = 60) were randomized to undergo surgical injury and repair using either polyglactin 910 suture or gelatin methacryloyl for epithelium re-approximation or anterior colporrhaphy with mesh augmentation using either polyglactin 910 suture or gelatin methacryloyl for mesh fixation and epithelium re-approximation. Noninjured controls (n = 5) were also evaluated. After 4 days, 4 weeks, or 3 months, tissues were analyzed by hematoxylin & eosin in addition to immunolabeling for macrophages, leukocytes, smooth muscle, and fibroblasts. RESULTS: Surgical injury repaired with suture was associated with increased inflammation and vessel density compared with gelatin methacryloyl. Vimentin and α-smooth muscle actin expression were increased with gelatin methacryloyl at 4 days (p = 0.0026, p = 0.0272). There were no differences in changes in smooth muscle or overall histomorphology after 3 months between the two closure techniques. Mesh repair with suture was also associated with increased inflammation and vessel density relative to gelatin methacryloyl. Quantification of collagen content by picrosirius red staining revealed increased thick collagen fibers throughout the implanted mesh with gelatin methacryloyl compared with suture at 4 weeks (0.62 ± 0.01 µm2 vs 0.55 ± 0.01, p = 0.018). Even at the long-term time point of 3 months, mesh repair with suture resulted in a profibrotic encapsulation of the mesh fibers, which was minimal with gelatin methacryloyl. Smooth muscle density was suppressed after mesh implantation returning to baseline levels at 3 months regardless of fixation with suture or gelatin methacryloyl. CONCLUSIONS: These results suggest that gelatin methacryloyl might be a safe alternative to suture for epithelium re-approximation and anchoring of prolapse meshes to the vagina and may improve chronic inflammation in the vaginal wall associated with mesh complications.


Assuntos
Prolapso de Órgão Pélvico , Telas Cirúrgicas , Animais , Feminino , Cobaias , Colágeno/metabolismo , Gelatina , Hidrogéis , Inflamação , Complicações Intraoperatórias , Metacrilatos , Prolapso de Órgão Pélvico/cirurgia , Poliglactina 910/metabolismo , Telas Cirúrgicas/efeitos adversos , Vagina/metabolismo , Vagina/cirurgia
4.
Med Res Rev ; 41(3): 1221-1254, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33347711

RESUMO

Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical applications. In the present review, the latest advancements in targeting moieties and nanocarrier drug delivery systems for the treatment of bone diseases are summarized. We also review the regeneration capability and effective delivery of nanomedicines for orthopedic applications.


Assuntos
Nanopartículas , Osteoporose , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina
5.
Exp Eye Res ; 205: 108472, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33516765

RESUMO

Abnormal human trabecular meshwork (HTM) cell function and extracellular matrix (ECM) remodeling contribute to HTM stiffening in primary open-angle glaucoma (POAG). Most current cellular HTM model systems do not sufficiently replicate the complex native three dimensional (3D) cell-ECM interface, limiting their use for investigating POAG pathology. Tissue-engineered hydrogels are ideally positioned to overcome shortcomings of current models. Here, we report a novel biomimetic HTM hydrogel and test its utility as a POAG disease model. HTM hydrogels were engineered by mixing normal donor-derived HTM cells with collagen type I, elastin-like polypeptide and hyaluronic acid, each containing photoactive functional groups, followed by UV crosslinking. Glaucomatous conditions were induced with dexamethasone (DEX), and effects of the Rho-associated kinase (ROCK) inhibitor Y27632 on cytoskeletal organization and tissue-level function, contingent on HTM cell-ECM interactions, were assessed. DEX exposure increased HTM hydrogel contractility, f-actin and alpha smooth muscle actin abundance and rearrangement, ECM remodeling, and fibronectin deposition - all contributing to HTM hydrogel condensation and stiffening consistent with glaucomatous HTM tissue behavior. Y27632 treatment produced precisely the opposite effects and attenuated the DEX-induced pathologic changes, resulting in HTM hydrogel relaxation and softening. For model validation, confirmed glaucomatous HTM (GTM) cells were encapsulated; GTM hydrogels showed increased contractility, fibronectin deposition, and stiffening vs. normal HTM hydrogels despite reduced GTM cell proliferation. We have developed a biomimetic HTM hydrogel model for detailed investigation of 3D cell-ECM interactions under normal and simulated glaucomatous conditions. Its bidirectional responsiveness to pharmacological challenge and rescue suggests promising potential to serve as screening platform for new POAG treatments with focus on HTM biomechanics.


Assuntos
Glaucoma de Ângulo Aberto/patologia , Hidrogéis , Modelos Biológicos , Malha Trabecular/patologia , Actinas/metabolismo , Idoso de 80 Anos ou mais , Amidas/farmacologia , Materiais Biomiméticos , Proteínas do Citoesqueleto/genética , Dexametasona/farmacologia , Elastina/genética , Inibidores Enzimáticos/farmacologia , Proteínas do Olho/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Glaucoma de Ângulo Aberto/metabolismo , Glucocorticoides/farmacologia , Glicoproteínas/genética , Humanos , Imuno-Histoquímica , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Engenharia Tecidual , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Quinases Associadas a rho/antagonistas & inibidores
6.
Prog Polym Sci ; 92: 135-157, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32831422

RESUMO

Electroconductive hydrogels (ECHs) are highly hydrated 3D networks generated through the incorporation of conductive polymers, nanoparticles, and other conductive materials into polymeric hydrogels. ECHs combine several advantageous properties of inherently conductive materials with the highly tunable physical and biochemical properties of hydrogels. Recently, the development of biocompatible ECHs has been investigated for various biomedical applications, such as tissue engineering, drug delivery, biosensors, flexible electronics, and other implantable medical devices. Several methods for the synthesis of ECHs have been reported, which include the incorporation of electrically conductive materials such as gold and silver nanoparticles, graphene, and carbon nanotubes, as well as various conductive polymers (CPs), such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxyythiophene) into hydrogel networks. Theses electroconductive composite hydrogels can be used as scaffolds with high swellability, tunable mechanical properties, and the capability to support cell growth both in vitro and in vivo. Furthermore, recent advancements in microfabrication techniques such as three dimensional (3D) bioprinting, micropatterning, and electrospinning have led to the development of ECHs with biomimetic microarchitectures that reproduce the characteristics of the native extracellular matrix (ECM). In addition, smart ECHs with controlled structures and healing properties have also been engineered into devices with prolonged half-lives and increased durability. The combination of sophisticated synthesis chemistries and modern microfabrication techniques have led to engineer smart ECHs with advanced architectures, geometries, and functionalities that are being increasingly used in drug delivery systems, biosensors, tissue engineering, and soft electronics. In this review, we will summarize different strategies to synthesize conductive biomaterials. We will also discuss the advanced microfabrication techniques used to fabricate ECHs with complex 3D architectures, as well as various biomedical applications of microfabricated ECHs.

7.
Small ; 15(36): e1902232, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31328877

RESUMO

Chronic wounds are characterized by impaired healing and uncontrolled inflammation, which compromise the protective role of the immune system and may lead to bacterial infection. Upregulation of miR-223 microRNAs (miRNAs) shows driving of the polarization of macrophages toward the anti-inflammatory (M2) phenotype, which could aid in the acceleration of wound healing. However, local-targeted delivery of microRNAs is still challenging, due to their low stability. Here, adhesive hydrogels containing miR-223 5p mimic (miR-223*) loaded hyaluronic acid nanoparticles are developed to control tissue macrophages polarization during wound healing processes. In vitro upregulation of miR-223* in J774A.1 macrophages demonstrates increased expression of the anti-inflammatory gene Arg-1 and a decrease in proinflammatory markers, including TNF-α, IL-1ß, and IL-6. The therapeutic potential of miR-223* loaded adhesive hydrogels is also evaluated in vivo. The adhesive hydrogels could adhere to and cover the wounds during the healing process in an acute excisional wound model. Histological evaluation and quantitative polymerase chain reaction (qPCR) analysis show that local delivery of miR-223* efficiently promotes the formation of uniform vascularized skin at the wound site, which is mainly due to the polarization of macrophages to the M2 phenotype. Overall, this study demonstrates the potential of nanoparticle-laden hydrogels conveying miRNA-223* to accelerate wound healing.


Assuntos
Hidrogéis/química , Imunomodulação/fisiologia , MicroRNAs/química , Nanopartículas/química , Cicatrização/fisiologia , Animais , Linhagem Celular , Ácido Hialurônico/química , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Microscopia Eletrônica de Varredura , Cicatrização/genética
8.
Mikrochim Acta ; 187(1): 25, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811449

RESUMO

The detection of thrombin by using CdS nanocrystals (CdS NCs), gold nanoparticles (AuNPs) and luminol is investigated in this work. Thrombin is detected by three methods. One is called the quenching method. It is based on the quenching effect of AuNPs on the yellow fluorescence of CdS NCs (with excitation/emission wavelengths of 355/550 nm) when placed adjacent to CdS NCs. The second method (called amplification method) is based on an amplification mechanism in which the plasmonics on the AuNPs enhance the emission of CdS NCs through distance related Förster resonance energy transfer (FRET). The third method is ratiometric and based on the emission by two luminophores, viz. CdS NCs and luminol. In this method, by increasing the concentration of thrombin, the intensity of CdS NCs decreases, while that of luminol increases. The results showed that ratiometric method was most sensitive (with an LOD of 500 fg.mL-1), followed by the amplification method (6.5 pg.mL-1) and the quenching method (92 pg.mL-1). Hence, the latter is less useful. Graphical abstract Schematic representation of three different methods (quenching, amplification and ratiometric) were applied for detection of thrombin via aptasensor. The CdS nanocrystals, streptavidin (Str) coated AuNPs and also Str-luminol coated AuNPs were used for the construction steps of the electrochemiluminescence (ECL)-based biosensor.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Compostos de Cádmio/química , Pontos Quânticos/química , Sulfetos/química , Trombina/análise , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Eletroquímica , Eletrodos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Medições Luminescentes , Trombina/metabolismo
9.
Drug Dev Ind Pharm ; 44(3): 452-462, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29098882

RESUMO

In the current study, we proposed a facile method for fabrication of multifunctional pH- and thermo-sensitive magnetic nanocomposites (MNCs) as a theranostic agent for using in targeted drug delivery and magnetic resonance imaging (MRI). To this end, we decorated Fe3O4 magnetic nanoparticles (MNPs) with N,N-dimethylaminoethyl methacrylate (DMAEMA) and N-isopropylacrylamide (NIPAAm), best known for their pH- and thermo-sensitive properties, respectively. We also conjugated mesoporous silica nanoparticles (MSNs) to polymer matrix acting as drug container to enhance the drug encapsulation efficacy. Methotroxate (MTX) as a model drug was successfully loaded in MNCs (M-MNCs) via surface adsorption onto MSNs and electrostatic interaction between drug and carrier. The pH- and temperature-triggered release of MTX was concluded through the evaluation of in vitro release at both physiological and simulated tumor tissue conditions. Based on in vitro cytotoxicity assay results, M-MNCs significantly revealed higher antitumor activity compared to free MTX. In vitro MR susceptibility experiment showed that M-MNCs relatively possessed high transverse relaxivity (r2) of about 0.15 mM-1·ms-1 and a linear relationship between the transverse relaxation rate (R2) and the Fe concentration in the M-MNCs was also demonstrated. Therefore, the designed MNCs can potentially become smart drug carrier, while they also can be promising MRI negative contrast agent.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Metotrexato/administração & dosagem , Metotrexato/química , Nanocompostos/química , Células A549 , Acrilamidas/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Metacrilatos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Dióxido de Silício/química
10.
Nano Lett ; 17(10): 6235-6240, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28819978

RESUMO

Nanoparticles have been used for engineering composite materials to improve the intrinsic properties and/or add functionalities to pristine polymers. The majority of the studies have focused on the incorporation of spherical nanoparticles within the composite fibers. Herein, we incorporate anisotropic branched-shaped zinc oxide (ZnO) nanoparticles into fibrous scaffolds fabricated by electrospinning. The addition of the branched particles resulted in their protrusion from fibers, mimicking the architecture of a rose stem. We demonstrated that the encapsulation of different-shape particles significantly influences the physicochemical and biological activities of the resultant composite scaffolds. In particular, the branched nanoparticles induced heterogeneous crystallization of the polymeric matrix and enhance the ultimate mechanical strain and strength. Moreover, the three-dimensional (3D) nature of the branched ZnO nanoparticles enhanced adhesion properties of the composite scaffolds to the tissues. In addition, the rose stem-like constructs offered excellent antibacterial activity, while supporting the growth of eukaryote cells.


Assuntos
Nanofibras/química , Nanopartículas/química , Alicerces Teciduais/química , Óxido de Zinco/química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Linhagem Celular , Humanos , Teste de Materiais , Nanofibras/ultraestrutura , Nanopartículas/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Estresse Mecânico , Resistência à Tração , Engenharia Tecidual , Óxido de Zinco/farmacologia
11.
Crit Rev Biotechnol ; 37(1): 53-68, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611830

RESUMO

The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the EBOV glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Animais , Anticorpos Monoclonais/economia , Custos e Análise de Custo , Ebolavirus/genética , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/economia , Doença pelo Vírus Ebola/epidemiologia , Humanos , Proteínas Virais/imunologia
12.
Biotechnol Bioeng ; 114(1): 217-231, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27477393

RESUMO

Mimicking the zonal organization of native articular cartilage, which is essential for proper tissue functions, has remained a challenge. In this study, a thermoresponsive copolymer of chitosan-g-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) was synthesized as a carrier of mesenchymal stem cells (MSCs) to provide a support for their proliferation and differentiation. Microengineered three-dimensional (3D) cell-laden CS-g-PNIPAAm hydrogels with different microstripe widths were fabricated to control cellular alignment and elongation in order to mimic the superficial zone of natural cartilage. Biochemical assays showed six- and sevenfold increment in secretion of glycosaminoglycans (GAGs) and total collagen from MSCs encapsulated within the synthesized hydrogel after 28 days incubation in chondrogenic medium. Chondrogenic differentiation was also verified qualitatively by histological and immunohistochemical assessments. It was found that 75 ± 6% of cells encapsulated within 50 µm wide microstripes were aligned with an aspect ratio of 2.07 ± 0.16 at day 5, which was more organized than those observed in unpatterned constructs (12 ± 7% alignment and a shape index of 1.20 ± 0.07). The microengineered constructs mimicked the cell shape and organization in the superficial zone of cartilage whiles the unpatterned one resembled the middle zone. Our results suggest that microfabrication of 3D cell-laden thermosensitive hydrogels is a promising platform for creating biomimetic structures leading to more successful multi-zonal cartilage tissue engineering. Biotechnol. Bioeng. 2017;114: 217-231. © 2016 Wiley Periodicals, Inc.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/citologia , Hidrogéis/química , Engenharia Tecidual/métodos , Resinas Acrílicas/química , Animais , Diferenciação Celular , Células Cultivadas , Quitosana/análogos & derivados , Quitosana/química , Células-Tronco Mesenquimais/citologia , Camundongos , Microtecnologia , Propriedades de Superfície , Temperatura
15.
Adv Funct Mater ; 25(30): 4814-4826, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26523134

RESUMO

Elastin-like polypeptides (ELPs) are promising for biomedical applications due to their unique thermoresponsive and elastic properties. ELP-based hydrogels have been produced through chemical and enzymatic crosslinking or photocrosslinking of modified ELPs. Herein, a photocrosslinked ELP gel using only canonical amino acids is presented. The inclusion of thiols from a pair of cysteine residues in the ELP sequence allows disulfide bond formation upon exposure to UV light, leading to the formation of a highly elastic hydrogel. The physical properties of the resulting hydrogel such as mechanical properties and swelling behavior can be easily tuned by controlling ELP concentrations. The biocompatibility of the engineered ELP hydrogels is shown in vitro as well as corroborated in vivo with subcutaneous implantation of hydrogels in rats. ELP constructs demonstrate long-term structural stability in vivo, and early and progressive host integration with no immune response, suggesting their potential for supporting wound repair. Ultimately, functionalized ELPs demonstrate the ability to function as an in vivo hemostatic material over bleeding wounds.

16.
Adv Funct Mater ; 25(6): 977-986, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26327819

RESUMO

Hydrogels are often employed as temporary platforms for cell proliferation and tissue organization in vitro. Researchers have incorporated photodegradable moieties into synthetic polymeric hydrogels as a means of achieving spatiotemporal control over material properties. In this study protein-based photodegradable hydrogels composed of methacrylated gelatin (GelMA) and a crosslinker containing o-nitrobenzyl ester groups have been developed. The hydrogels are able to degrade rapidly and specifically in response to UV light and can be photopatterned to a variety of shapes and dimensions in a one-step process. Micropatterned photodegradable hydrogels are shown to improve cell distribution, alignment and beating regularity of cultured neonatal rat cardiomyocytes. Overall this work introduces a new class of photodegradable hydrogel based on natural and biofunctional polymers as cell culture substrates for improving cellular organization and function.

17.
Adv Funct Mater ; 24(26): 4060-4067, 2014 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-25411576

RESUMO

The fabrication of cell-laden structures with anisotropic mechanical properties while having a precise control over the distribution of different cell types within the constructs is important for many tissue engineering applications. Automated textile technologies for making fabrics allow simultaneous control over the color pattern and directional mechanical properties. The use of textile techniques in tissue engineering, however, demands the presence of cell-laden fibers that can withstand the mechanical stresses during the assembly process. Here, the concept of composite living fibers (CLFs) in which a core of load bearing synthetic polymer is coated by a hydrogel layer containing cells or microparticles is introduced. The core thread is drawn sequentially through reservoirs containing a cell-laden prepolymer and a crosslinking reagent. The thickness of the hydrogel layer increases linearly with to the drawing speed and the prepolymer viscosity. CLFs are fabricated and assembled using regular textile processes including weaving, knitting, braiding, winding, and embroidering, to form cell-laden structures. Cellular viability and metabolic activity are preserved during CLF fabrication and assembly, demonstrating the feasibility of using these processes for engineering functional 3D tissue constructs.

18.
Small ; 10(3): 514-23, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24127350

RESUMO

Graphene-based materials are useful reinforcing agents to modify the mechanical properties of hydrogels. Here, an approach is presented to covalently incorporate graphene oxide (GO) into hydrogels via radical copolymerization to enhance the dispersion and conjugation of GO sheets within the hydrogels. GO is chemically modified to present surface-grafted methacrylate groups (MeGO). In comparison to GO, higher concentrations of MeGO can be stably dispersed in a pre-gel solution containing methacrylated gelatin (GelMA) without aggregation or significant increase in viscosity. In addition, the resulting MeGO-GelMA hydrogels demonstrate a significant increase in fracture strength with increasing MeGO concentration. Interestingly, the rigidity of the hydrogels is not significantly affected by the covalently incorporated GO. Therefore, this approach can be used to enhance the structural integrity and resistance to fracture of the hydrogels without inadvertently affecting their rigidity, which is known to affect the behavior of encapsulated cells. The biocompatibility of MeGO-GelMA hydrogels is confirmed by measuring the viability and proliferation of the encapsulated fibroblasts. Overall, this study highlights the advantage of covalently incorporating GO into a hydrogel system, and improves the quality of cell-laden hydrogels.


Assuntos
Fibroblastos/citologia , Grafite/química , Hidrogéis/química , Fenômenos Mecânicos , Óxidos/química , Animais , Biodegradação Ambiental , Gelatina/química , Metacrilatos/química , Camundongos , Microscopia Eletrônica de Varredura , Células NIH 3T3 , Polimerização , Espectrofotometria Ultravioleta
19.
Int J Biol Macromol ; 266(Pt 2): 131051, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556223

RESUMO

In situ-forming hydrogels that possess the ability to be injected in a less invasive manner and mimic the biochemical composition and microarchitecture of the native cartilage extracellular matrix are desired for cartilage tissue engineering. Besides, gelation time and stiffness of the hydrogel are two interdependent factors that affect cells' distribution and fate and hence need to be optimized. This study presented a bioinspired in situ-forming hydrogel composite of hyaluronic acid (HA), chondroitin sulfate (CS), and collagen short nanofiber (CSNF). HA and CS were functionalized with aldehyde and amine groups to form a gel through a Schiff-base reaction. CSNF was fabricated via electrospinning, followed by fragmentation by ultrasonics. Gelation time (11-360 s) and compressive modulus (1.4-16.2 kPa) were obtained by varying the concentrations of CS, HA, CSNFs, and CSNFs length. The biodegradability and biocompatibility of the hydrogels with varying gelation and stiffness were also assessed in vitro and in vivo. At three weeks, the assessment of hydrogels' chondrogenic differentiation also yields varying levels of chondrogenic differentiation. The subcutaneous implantation of the hydrogels in a mouse model indicated no severe inflammation. Results demonstrated that the injectable CS/HA@CSNF hydrogel was a promising hydrogel for tissue engineering and cartilage regeneration.


Assuntos
Sulfatos de Condroitina , Colágeno , Ácido Hialurônico , Hidrogéis , Nanocompostos , Nanofibras , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Nanofibras/química , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Colágeno/química , Nanocompostos/química , Engenharia Tecidual/métodos , Cartilagem/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
20.
Adv Mater ; : e2404225, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38970527

RESUMO

Real-time continuous monitoring of non-cognitive markers is crucial for the early detection and management of chronic conditions. Current diagnostic methods are often invasive and not suitable for at-home monitoring. An elastic, adhesive, and biodegradable hydrogel-based wearable sensor with superior accuracy and durability for monitoring real-time human health is developed. Employing a supramolecular engineering strategy, a pseudo-slide-ring hydrogel is synthesized by combining polyacrylamide (pAAm), ß-cyclodextrin (ß-CD), and poly 2-(acryloyloxy)ethyltrimethylammonium chloride (AETAc) bio ionic liquid (Bio-IL). This novel approach decouples conflicting mechano-chemical effects arising from different molecular building blocks and provides a balance of mechanical toughness (1.1 × 106 Jm-3), flexibility, conductivity (≈0.29 S m-1), and tissue adhesion (≈27 kPa), along with rapid self-healing and remarkable stretchability (≈3000%). Unlike traditional hydrogels, the one-pot synthesis avoids chemical crosslinkers and metallic nanofillers, reducing cytotoxicity. While the pAAm provides mechanical strength, the formation of the pseudo-slide-ring structure ensures high stretchability and flexibility. Combining pAAm with ß-CD and pAETAc enhances biocompatibility and biodegradability, as confirmed by in vitro and in vivo studies. The hydrogel also offers transparency, passive-cooling, ultraviolet (UV)-shielding, and 3D printability, enhancing its practicality for everyday use. The engineered sensor demonstratesimproved efficiency, stability, and sensitivity in motion/haptic sensing, advancing real-time human healthcare monitoring.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa