Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 14(3): e10921, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435015

RESUMO

Tropical ecosystems are challenging for pinnipeds due to fluctuating food availability. According to previous research, the Galapagos sea lion (GSL, Zalophus wollebaeki) adopts trophic flexibility to face such conditions. However, this hypothesis comes from studies using traditional methods (hard-parts analysis of scat and isotopic analysis from tissue). We studied the diet of five rookeries in the southeastern Galapagos bioregion (which harbors the highest GSL density), via DNA-metabarcoding of scat samples. The DNA-metabarcoding approach may identify consumed prey with a higher taxonomic resolution than isotopic analysis, while not depending on hard-parts remaining through digestion. Our study included five different rookeries to look for evidence of trophic flexibility at the bioregional level. We detected 98 prey OTUs (124 scats), mostly assigned to bony-fish taxa; we identified novel prey items, including a shark, rays, and several deep-sea fish. Our data supported the trophic flexibility of GSL throughout the studied bioregion since different individuals from the same rookery consumed prey coming from different habitats and trophic levels. Significant diet differentiations were found among rookeries, particularly between Punta Pitt and Santa Fe. Punta Pitt rookery, with a more pronounced bathymetry and lower productivity, was distinguished by a high trophic level and consumption of a high proportion of deep-sea prey; meanwhile, Santa Fe, located in more productive, shallow waters over the shelf, consumed a high proportion of epipelagic planktivorous fish. Geographic location and heterogeneous bathymetry of El Malecon, Española, and Floreana rookeries would allow the animals therein to access both, epipelagic prey over the shelf, and deep-sea prey out of the shelf; this would lead to a higher prey richness and diet variability there. These findings provide evidence of GSL adopting a trophic flexibility to tune their diets to different ecological contexts. This strategy would be crucial for this endangered species to overcome the challenges faced in a habitat with fluctuating foraging conditions.

2.
Data Brief ; 53: 110070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317728

RESUMO

We contribute transcriptomic data for two species of Ostracoda, an early-diverged group of small-sized pancrustaceans. Data include new reference transcriptomes for two asexual non-marine species (Dolerocypris sinensis and Heterocypris aff. salina), as well as single-specimen transcriptomic data that served to analyse gene expression across four developmental stages in D. sinensis. Data are evaluated by computing gene expression profiles of the different developmental stages which consistently placed eggs and small larvae (at the stage of instar A-8) similar to each other, and apart from adults which were distinct from all other developmental stages but closest to large larvae (instar A-4). We further evaluated the transcriptomic data with two newly sequenced low-coverage genomes of the target species. The new data thus document the feasibility of obtaining reliable transcriptomic data from single specimens - even eggs - of these small metazoans.

3.
Environ Microbiol Rep ; 16(2): e13253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575147

RESUMO

Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi-host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner-generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.


Assuntos
Micorrizas , Micorrizas/genética , Árvores/microbiologia , Filogenia , Biodiversidade , Fungos/genética , Plantas/microbiologia , Solo , Microbiologia do Solo
4.
Database (Oxford) ; 20242024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865431

RESUMO

Molecular identification of micro- and macroorganisms based on nuclear markers has revolutionized our understanding of their taxonomy, phylogeny and ecology. Today, research on the diversity of eukaryotes in global ecosystems heavily relies on nuclear ribosomal RNA (rRNA) markers. Here, we present the research community-curated reference database EUKARYOME for nuclear ribosomal 18S rRNA, internal transcribed spacer (ITS) and 28S rRNA markers for all eukaryotes, including metazoans (animals), protists, fungi and plants. It is particularly useful for the identification of arbuscular mycorrhizal fungi as it bridges the four commonly used molecular markers-ITS1, ITS2, 18S V4-V5 and 28S D1-D2 subregions. The key benefits of this database over other annotated reference sequence databases are that it is not restricted to certain taxonomic groups and it includes all rRNA markers. EUKARYOME also offers a number of reference long-read sequences that are derived from (meta)genomic and (meta)barcoding-a unique feature that can be used for taxonomic identification and chimera control of third-generation, long-read, high-throughput sequencing data. Taxonomic assignments of rRNA genes in the database are verified based on phylogenetic approaches. The reference datasets are available in multiple formats from the project homepage, http://www.eukaryome.org.


Assuntos
Eucariotos , Eucariotos/genética , RNA Ribossômico 18S/genética , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Animais , Genes de RNAr/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa