Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 140, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231394

RESUMO

Enzymes have become important tools in many industries. However, the full exploitation of their potential is currently limited by a lack of efficient and cost-effective methods for enzyme purification from microbial production. One technology that could solve this problem is foam fractionation. In this study, we show that diverse natural foam-stabilizing proteins fused as F-Tags to ß-lactamase, penicillin G acylase, and formate dehydrogenase, respectively, are able to mediate foaming and recovery of the enzymes by foam fractionation. The catalytic activity of all three candidates is largely preserved. Under appropriate fractionation conditions, especially when a wash buffer is used, some F-Tags also allow nearly complete separation of the target enzyme from a contaminating protein. We found that a larger distance between the F-Tag and the target enzyme has a positive effect on the maintenance of catalytic activity. However, we did not identify any particular sequence motifs or physical parameters that influenced performance as an F-tag. The best results were obtained with a short helical F-Tag, which was originally intended to serve only as a linker sequence. The findings of the study suggest that the development of molecular tags that enable the establishment of surfactant-free foam fractionation for enzyme workup is a promising method. KEY POINTS: • Foam-stabilizing proteins mediate activity-preserving foam fractionation of enzymes • Performance as an F-Tag is not restricted to particular structural motifs • Separation from untagged protein benefits from low foam stability and foam washings.


Assuntos
Fracionamento Químico , Penicilina Amidase , Formiato Desidrogenases , Indústrias , Tensoativos
2.
Angew Chem Int Ed Engl ; 63(25): e202404105, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630059

RESUMO

Silyl ethers fulfil a fundamental role in synthetic organic chemistry as protecting groups and their selective cleavage is an important factor in their application. We present here for the first time two enzymes, SilE-R and SilE-S, which are able to hydrolyse silyl ethers. They belong to the stress-response dimeric A/B barrel domain (DABB) family and are able to cleave the Si-O bond with opposite enantiopreference. Silyl ethers containing aromatic, cyclic or aliphatic alcohols and, depending on the alcohol moiety, silyl functions as large as TBDMS are accepted. The X-ray crystal structure of SilE-R, determined to a resolution of 1.98 Å, in combination with mutational studies, revealed an active site featuring two histidine residues, H8 and H79, which likely act synergistically as nucleophile and Brønsted base in the hydrolytic mechanism, which has not previously been described for enzymes. Although the natural function of SilE-R and SilE-S is unknown, we propose that these 'silyl etherases' may have significant potential for synthetic applications.


Assuntos
Éteres , Hidrólise , Éteres/química , Estereoisomerismo , Modelos Moleculares , Cristalografia por Raios X , Compostos de Organossilício/química , Compostos de Organossilício/síntese química , Estrutura Molecular , Domínio Catalítico
3.
Chembiochem ; 24(17): e202300290, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167138

RESUMO

Alcohol dehydrogenases (ADH) are important tools for generating chiral α-hydroxyketones. Previously, only the ADH of Thauera aromatica was known to convert cyclic α-diketones with appropriate preference. Here, we extend the spectrum of suitable enzymes by three alcohol dehydrogenases from Citrifermentans bemidjiense (CibADH), Deferrisoma camini (DecADH), and Thauera phenylacetica (ThpADH). Of these, DecADH is characterized by very high thermostability; CibADH and ThpADH convert α-halogenated cyclohexanones with increased activity. Otherwise, however, the substrate spectrum of all four ADHs is highly conserved. Structural considerations led to the conclusion that conversion of diketones requires not only the expansion of the active site into a large binding pocket, but also the circumferential modification of almost all amino acid residues that form the first shell of the binding pocket. The constellation appears to be overall highly specific for the relative positioning of the carbonyl functions and the size of the C-ring.


Assuntos
Álcool Desidrogenase , Zinco , Sequência de Aminoácidos , Zinco/química , Álcool Desidrogenase/metabolismo , Domínio Catalítico , Aminoácidos , Cetonas
4.
Chembiochem ; 24(18): e202300384, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224395

RESUMO

Silyl ether protecting groups are important tools in organic synthesis, ensuring selective reactions of hydroxyl functional groups. Enantiospecific formation or cleavage could simultaneously enable the resolution of racemic mixtures and thus significantly increase the efficiency of complex synthetic pathways. Based on reports that lipases, which today are already particularly important tools in chemical synthesis, can catalyze the enantiospecific turnover of trimethylsilanol (TMS)-protected alcohols, the goal of this study was to determine the conditions under which such a catalysis occurs. Through detailed experimental and mechanistic investigation, we demonstrated that although lipases mediate the turnover of TMS-protected alcohols, this occurs independently of the known catalytic triad, as this is unable to stabilize a tetrahedral intermediate. The reaction is essentially non-specific and therefore most likely completely independent of the active site. This rules out lipases as catalysts for the resolution of racemic mixtures of alcohols through protection or deprotection with silyl groups.


Assuntos
Éteres , Lipase , Éteres/química , Lipase/química , Álcoois/química , Éter , Catálise
5.
Chembiochem ; 23(15): e202200149, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557486

RESUMO

The asymmetric reduction of ketones to chiral hydroxyl compounds by alcohol dehydrogenases (ADHs) is an established strategy for the provision of valuable precursors for fine chemicals and pharmaceutics. However, most ADHs favor linear aliphatic and aromatic carbonyl compounds, and suitable biocatalysts with preference for cyclic ketones and diketones are still scarce. Among the few candidates, the alcohol dehydrogenase from Thauera aromatica (ThaADH) stands out with a high activity for the reduction of the cyclic α-diketone 1,2-cyclohexanedione to the corresponding α-hydroxy ketone. This study elucidates catalytic and structural features of the enzyme. ThaADH showed a remarkable thermal and pH stability as well as stability in the presence of polar solvents. A thorough description of the substrate scope combined with the resolution and description of the crystal structure, demonstrated a strong preference of ThaADH for cyclic α-substituted cyclohexanones, and indicated structural determinants responsible for the unique substrate acceptance.


Assuntos
Álcool Desidrogenase , Thauera , Álcool Desidrogenase/química , Catálise , Cetonas/química , Especificidade por Substrato , Thauera/metabolismo , Zinco
6.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31900306

RESUMO

The Gram-positive soil bacterium Arthrobacter sp. strain TS-15 (DSM 32400), which is capable of metabolizing ephedrine as a sole source of carbon and energy, was isolated. According to 16S rRNA gene sequences and comparative genomic analysis, Arthrobacter sp. TS-15 is closely related to Arthrobacter aurescens Distinct from all known physiological paths, ephedrine metabolism by Arthrobacter sp. TS-15 is initiated by the selective oxidation of the hydroxyl function at the α-C atom, yielding methcathinone as the primary degradation product. Rational genome mining revealed a gene cluster potentially encoding the novel pathway. Two genes from the cluster, which encoded putative short-chain dehydrogenases, were cloned and expressed in Escherichia coli The obtained enzymes were strictly NAD+ dependent and catalyzed the oxidation of ephedrine to methcathinone. Pseudoephedrine dehydrogenase (PseDH) selectively converted (S,S)-(+)-pseudoephedrine and (S,R)-(+)-ephedrine to (S)- and (R)-methcathinone, respectively. Ephedrine dehydrogenase (EDH) exhibited strict selectivity for the oxidation of the diastereomers (R,S)-(-)-ephedrine and (R,R)-(-)-pseudoephedrine.IMPORTANCEArthrobacter sp. TS-15 is a newly isolated bacterium with the unique ability to degrade ephedrine isomers. The initiating steps of the novel metabolic pathway are described. Arthrobacter sp. TS-15 and its isolated ephedrine-oxidizing enzymes have potential for use in decontamination and synthetic applications.


Assuntos
Arthrobacter/metabolismo , Efedrina/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudoefedrina/metabolismo , Arthrobacter/classificação , Biodegradação Ambiental , Efedrina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Micrococcaceae , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Família Multigênica , Pseudoefedrina/química , Estereoisomerismo
7.
Chemistry ; 25(7): 1716-1721, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30475411

RESUMO

In cooperative catalysis, the combination of chemo- and biocatalysts to perform one-pot reactions is a powerful tool for the improvement of chemical synthesis. Herein, UiO-66-NH2 was employed to stepwise immobilize Pd nanoparticles (NPs) and Candida antarctica lipase B (CalB) for the fabrication of biohybrid catalysts for cascade reactions. Distinct from traditional materials, UiO-66-NH2 has a robust but tunable structure that can be utilized with a ligand exchange approach to adjust its hydrophobicity, resulting in excellent catalyst dispersity in diverse reaction media. These attractive properties contribute to the formation of MOF-based biohybrid catalysts with high activity and selectivity in the synthesis of benzyl hexanoate from benzaldehyde and ethyl hexanoate. With this proof-of-concept, we reasonably expect that future tailor-made MOFs can combine other catalysts, ranging from chemical to biological catalysts for applications in industry.

8.
Angew Chem Int Ed Engl ; 58(37): 12960-12963, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31218804

RESUMO

Pickering emulsions (PEs) are particle-stabilized multiphase systems with promising features for synthetic applications. Described here is a novel, simplified set-up employing catalytically active whole cells for simultaneous emulsion stabilization and synthetic reaction. In the stereoselective carboligation of benzaldehyde to (R)-benzoin catalyzed by a benzaldehyde lyase in E. coli, the set-up yielded maximum substrate conversion within very short time, while economizing material demand and waste. Formation and activity of freshly produced PEs were enhanced when the catalytic whole cells were covered with hydrophobic silicone prior to PE formation. Benchmarked against other easy-to-handle whole-cell biocatalysts in pure organic solvent, neat substrate, an aqueous emulsion in substrate, and a micro-aquatic system, respectively, the cell-stabilized PE outperformed all other systems by far.


Assuntos
Aldeído Liases/química , Benzaldeídos/química , Benzoína/química , Emulsões/química , Escherichia coli/enzimologia , Biocatálise , Escherichia coli/citologia , Interações Hidrofóbicas e Hidrofílicas , Silicones/química , Estereoisomerismo
9.
Chemistry ; 24(43): 10966-10970, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29894011

RESUMO

The design and construction of polymeric compartmentalized structures in water have been intensively explored for controllable catalysis, but there is still the challenge of setting up catalytic compartments in organic media. Here, we designed a simple block copolymer, PCL-b-PEG-b-PCL, to construct a stable and multi-compartmentalized emulsion in an organic solvent by hand-shaking. This gentle emulsion preparation allowed a successful encapsulation of vulnerable biocatalysts such as benzaldehyde lyase (BAL) and alcohol dehydrogenase (ADH). The compartmentalization provided the emulsion with an exceptionally large interfacial area that could enhance BAL activity up to 225 times as compared to the traditional biphasic system. Moreover, the system could be easily scaled up due to its facile preparation with low cost. Therefore, our results pave the way for developing compartmentalized structures in solvents for biocatalysis in large-scale synthetic chemistry.


Assuntos
Álcool Desidrogenase/metabolismo , Aldeído Liases/metabolismo , Emulsões/química , Água/química , Biocatálise , Dicroísmo Circular , Corantes Fluorescentes/química , Microscopia Confocal , Poliésteres/química , Polietilenoglicóis/química
10.
Biotechnol Lett ; 39(5): 667-683, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28181062

RESUMO

Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.


Assuntos
Biocatálise , Bioengenharia , Reatores Biológicos , Células Imobilizadas , Animais , Humanos
11.
Chembiochem ; 16(10): 1512-9, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26096455

RESUMO

Zinc-dependent alcohol dehydrogenases (ADHs) are a class of enzymes applied in different biocatalytic processes ranging from lab to industrial scale. However, one drawback is the limited substrate range, necessitating a whole array of different ADHs for the relevant substrate classes. In this study, we investigated structural determinants of the substrate spectrum in the zinc-dependent ADH carbonyl reductase 2 from Candida parapsilosis (CPCR2), combining methods of mutational analysis with in silico substrate docking. Assigned active site residues were genetically randomized, and the resulting mutant libraries were screened with a selection of challenging carbonyl substrates. Three variants (C57A, W116K, and L119M) with improved activities toward different substrates were detected at neighboring positions in the active site. Thus, all possible combinations of the mutations were generated and characterized for their substrate specificity, yielding several improved variants. The most interesting were a C57A variant, with a 27-fold increase in specific activity for 4'-acetamidoacetophenone, and the double mutant CPCR2 B16-(C57A, L119M), with a 45-fold improvement in the kcat ⋅KM (-1) value. The obtained variants were further investigated by in silico docking experiments. The results indicate that the mentioned residues are structural determinants of the substrate specificity of CPCR2, being major players in the definition of the active site. Comparison of these results with closely related enzymes suggests that these might even be transferred to other ADHs.


Assuntos
Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Candida/enzimologia , Zinco/metabolismo , Acetofenonas/química , Acetofenonas/metabolismo , Álcool Desidrogenase/genética , Candida/química , Candida/genética , Candida/metabolismo , Domínio Catalítico , Análise Mutacional de DNA , Simulação de Acoplamento Molecular , Mutação Puntual , Conformação Proteica , Especificidade por Substrato
12.
Biomacromolecules ; 15(11): 3881-90, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25144348

RESUMO

Although several strategies are now available to enzymatically cross-link linear polymers to hydrogels for biomedical use, little progress has been reported on the use of dendritic polymers for the same purpose. Herein, we demonstrate that horseradish peroxidase (HRP) successfully catalyzes the oxidative cross-linking of a hyperbranched polyglycerol (hPG) functionalized with phenol groups to hydrogels. The tunable cross-linking results in adjustable hydrogel properties. Because the obtained materials are cytocompatible, they have great potential for encapsulating living cells for regenerative therapy. The gel formation can be triggered by glucose and controlled well under various environmental conditions.


Assuntos
Reagentes de Ligações Cruzadas/química , Glicerol/química , Hidrogéis/química , Polímeros/química , Alicerces Teciduais/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Reagentes de Ligações Cruzadas/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Glicerol/farmacologia , Hidrogéis/farmacologia , Camundongos , Polímeros/farmacologia
13.
Appl Microbiol Biotechnol ; 98(4): 1517-29, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362856

RESUMO

Cofactor-dependent enzymes catalyze a broad range of synthetically useful transformations. However, the cofactor requirement also poses economic and practical challenges for the application of these biocatalysts. For three decades, considerable research effort has been devoted to the development of reliable in situ regeneration methods for the most commonly employed cofactors, particularly NADH and NADPH. Today, researchers can choose from a plethora of options, and oxidoreductases are routinely employed even on industrial scale. Nevertheless, more efficient cofactor regeneration methods are still being developed, with the aim of achieving better atom economy, simpler reaction setups, and higher productivities. Besides, cofactor dependence has been recognized as an opportunity to confer novel reactivity upon enzymes by engineering their cofactors, and to couple (redox) biotransformations in multi-enzyme cascade systems. These novel concepts will help to further establish cofactor-dependent biotransformations as an attractive option for the synthesis of biologically active compounds, chiral building blocks, and bio-based platform molecules.


Assuntos
Coenzimas/metabolismo , Biotransformação , NAD/metabolismo , NADP/metabolismo
14.
Chem Soc Rev ; 42(15): 6475-90, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23515487

RESUMO

Commercial products for personal care, generally perceived as cosmetics, have an important impact on everyday life worldwide. Accordingly, the market for both consumer products and specialty chemicals comprising their ingredients is considerable. Lipases have started to play a minor role as active ingredients in so-called 'functional cosmetics' as well as a major role as catalysts for the industrial production of various specialty esters, aroma compounds and active agents. Interestingly, both applications almost always require preparation by appropriate immobilisation techniques. In addition, for catalytic use special reactor concepts often have to be employed due to the mostly limited stability of these preparations. Nevertheless, these processes show distinct advantages based on process simplification, product quality and environmental footprint and are therefore apt to more and more replace traditional chemical processes. Here, for the first time a review on the various aspects of using immobilised lipases in the cosmetics industry is given.


Assuntos
Indústria Química , Cosméticos , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Biocatálise , Enzimas Imobilizadas/química , Lipase/química
15.
Chemistry ; 19(31): 10150-9, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23843281

RESUMO

A new and versatile, crown ether appended, chiral supergelator has been designed and synthesized based on the bis-urea motif. The introduction of a stereogenic center improved its gelation ability significantly relative to its achiral analogue. This low-molecular-weight gelator forms supramolecular gels in a variety of organic solvents. It is sensitive to multiple chemical stimuli and the sol-gel phase transitions can be reversibly triggered by host-guest interactions. The gel can be used to trap enzymes and release them on demand by chemical stimuli. It stabilizes the microparticles in Pickering emulsions so that enzyme-catalyzed organic reactions can take place in the polar phase inside the microparticles, the organic reactants diffusing through the biphasic interface from the surrounding organic phase. Because of the higher interface area between the organic and polar phases, enzyme activity is enhanced in comparison with simple biphasic systems.


Assuntos
Compostos Macrocíclicos/química , Ureia/análogos & derivados , Ureia/química , Biocatálise , Éteres de Coroa/química , Géis , Estrutura Molecular , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Ureia/síntese química
16.
Phys Chem Chem Phys ; 14(27): 9594-600, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22684227

RESUMO

The aim of the present work is the use of a water soluble enzyme in an organic solvent, still with a pronounced catalytic activity. Therefore, lipase B from Candida antarctica (CalB) is immobilized within micron-sized thermosensitive p-NIPAM hydrogel particles using a solvent exchange from polar to organic solvents. The absorbed amount of CalB is investigated at different immobilization temperatures. Confocal laser scanning microscopy (CLSM) shows that CalB is homogeneously distributed within the polymer network. An enhanced specific activity of CalB in n-hexane is achieved after immobilization within the p-NIPAM microgels. In order to get information on the supply of the substrate depending on the temperature, the activity is determined at different reaction temperatures. Additionally, the system is stable in the organic solvent, namely n-hexane, and shows a good reusability.


Assuntos
Resinas Acrílicas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lipase/metabolismo , Solventes/química , Biocatálise , Candida/enzimologia , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hexanos/química , Lipase/química , Microscopia Confocal , Temperatura
17.
Biotechnol J ; 17(12): e2200271, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35933602

RESUMO

Today, the availability of methods for the activity-preserving and cost-efficient downstream processing of enzymes forms a major bottleneck to the use of these valuable tools in technical processes. A promising technology appears to be foam fractionation, which utilizes the adsorption of proteins at a gas-liquid interface. However, the employment of surfactants and the dependency of the applicability on individual properties of the target molecules are considerable drawbacks. Here, we demonstrate that a reversible fusion of the large, surface-active protein Ranaspumin-2 (Rsn-2) to a ß-lactamase (Bla) enabled both surfactant-free formation of a stable foam and directed enrichment of the enzyme by the foaming. At the same time, Bla maintained 70% of its catalytic activity, which was in stark contrast to the enzyme without fusion to Rsn-2. Rsn-2 predominantly mediated adsorption. Comparable results were obtained after fusion to the structurally more complex penicillin G acylase (PGA) as the target enzyme. The results indicate that using a surface-active protein as a fusion tag might be the clue to the establishment of foam fractionation as a general method for enzyme downstream processing.


Assuntos
Proteínas , beta-Lactamases , Adsorção , Tensoativos
18.
Mar Biotechnol (NY) ; 23(5): 809-820, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34595592

RESUMO

Viewing the considerable potential of marine agar as a source for the sustainable production of energy as well as nature-derived pharmaceutics, this work investigated the catalytic activity of three novel GH50 agarases from the mesophilic marine bacterium Microbulbifer elongatus PORT2 isolated from Indonesian coastal seawaters. The GH50 agarases AgaA50, AgaB50, and AgaC50 were identified through genome analysis; the corresponding genes were cloned and expressed in Escherichia coli BL21 (DE3). All recombinant agarases hydrolyzed ß-p-nitrophenyl galactopyranoside, indicating ß-glycosidase characteristics. AgaA50 and AgaB50 were able to cleave diverse natural agar species derived from Indonesian agarophytes, indicating a promising tolerance of these enzymes for substrate modifications. All three GH50 agarases degraded agarose, albeit with remarkable diversity in their catalytic activity and mode of action. AgaA50 and AgaC50 exerted exolytic activity releasing differently sized neoagarobioses, while AgaB50 showed additional endolytic activity in dependence on the substrate size. Surprisingly, AgaA50 and AgaB50 revealed considerable thermostability, retaining over 75% activity after 1-h incubation at 50 °C. Considering the thermal properties of agar, this makes these enzymes promising candidates for industrial processing.


Assuntos
Gammaproteobacteria/química , Glicosídeo Hidrolases/isolamento & purificação , Ágar/metabolismo , Proteínas de Bactérias/genética , Escherichia coli , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Alga Marinha/química
19.
Langmuir ; 26(15): 12980-7, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20590132

RESUMO

We present a simple and versatile approach of using hydrogel microparticles to transfer both inorganic hydrophilic nanoparticles (NPs) such as CdTe quantum dots and enzymes such as lipase B from Candida antarctica (CalB) to organic media and eventually encapsulate them in the gel microparticles by consecutive exchange of the water swollen in the hydrogel microparticles with water-miscible organic solvents and water-immiscible solvents. The entrapment of hydrophilic nanoparticles is due to their incompatibility with water-immiscible organic solvents soaked in the gel matrices and in the surrounding environment, so the present approach obviates the need for any chemical modification to the NP surface or to the hydrogel and furthermore does not require any size matching or chemical affinity of the NPs for the hydrogel networks. The solvent exchange process causes little change of the intrinsic properties of hydrophilic nanoparticles; CdTe quantum dots encapsulated in hydrogel microparticles, dispersed in water-immiscible organic solvents, remain strongly fluorescent, and CalB retains high catalytic activity. Of importance is that the hydrophilic nanoparticles encapsulated in the gel microparticles in organic media can be completely recovered in aqueous media via reversed solvent exchange. As a consequence, the present approach should hold immense promise for technical applications, especially in catalysis.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas/química , Nanotecnologia/métodos , Solventes/química , Interações Hidrofóbicas e Hidrofílicas
20.
Bioresour Technol ; 295: 122221, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31615701

RESUMO

Whole-cell biocatalysis plays an important role in biotransformation with unique features such as good tolerance of solvents and easy recycling. However, the relatively low catalytic efficiency limits their use in real production. In this study, a multi-compartmentalized emulsion in organic solvent was constructed to encapsulate living cells for enhanced catalytic performance. Extraordinary large interfacial area of the emulsion improved the bioactivity of Escherichia coli (E. Coli) cells up to 137 times compared to a standard biphasic system. The emulsion was stabilized by a biocompatible polymer and prepared by gentle shaking by hand, which resulted in good cell viability. Moreover, the encapsulated cells could be easily recycled, and the activity remained more than 70% after five cycles. This work provides a promising approach for utilizing whole-cell catalysts for efficient organic catalysis.


Assuntos
Escherichia coli , Biocatálise , Catálise , Emulsões , Solventes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa