Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Imaging ; 7(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34821870

RESUMO

Deep learning based reconstruction methods deliver outstanding results for solving inverse problems and are therefore becoming increasingly important. A recently invented class of learning-based reconstruction methods is the so-called NETT (for Network Tikhonov Regularization), which contains a trained neural network as regularizer in generalized Tikhonov regularization. The existing analysis of NETT considers fixed operators and fixed regularizers and analyzes the convergence as the noise level in the data approaches zero. In this paper, we extend the frameworks and analysis considerably to reflect various practical aspects and take into account discretization of the data space, the solution space, the forward operator and the neural network defining the regularizer. We show the asymptotic convergence of the discretized NETT approach for decreasing noise levels and discretization errors. Additionally, we derive convergence rates and present numerical results for a limited data problem in photoacoustic tomography.

2.
J Math Imaging Vis ; 62(3): 445-455, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308256

RESUMO

Deep learning and (deep) neural networks are emerging tools to address inverse problems and image reconstruction tasks. Despite outstanding performance, the mathematical analysis for solving inverse problems by neural networks is mostly missing. In this paper, we introduce and rigorously analyze families of deep regularizing neural networks (RegNets) of the form B α + N θ ( α ) B α , where B α is a classical regularization and the network N θ ( α ) B α is trained to recover the missing part Id X - B α not found by the classical regularization. We show that these regularizing networks yield a convergent regularization method for solving inverse problems. Additionally, we derive convergence rates (quantitative error estimates) assuming a sufficient decay of the associated distance function. We demonstrate that our results recover existing convergence and convergence rates results for filter-based regularization methods as well as the recently introduced null space network as special cases. Numerical results are presented for a tomographic sparse data problem, which clearly demonstrate that the proposed RegNets improve classical regularization as well as the null space network.

3.
Inverse Probl Sci Eng ; 27(7): 987-1005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057659

RESUMO

The development of fast and accurate image reconstruction algorithms is a central aspect of computed tomography. In this paper, we investigate this issue for the sparse data problem in photoacoustic tomography (PAT). We develop a direct and highly efficient reconstruction algorithm based on deep learning. In our approach, image reconstruction is performed with a deep convolutional neural network (CNN), whose weights are adjusted prior to the actual image reconstruction based on a set of training data. The proposed reconstruction approach can be interpreted as a network that uses the PAT filtered backprojection algorithm for the first layer, followed by the U-net architecture for the remaining layers. Actual image reconstruction with deep learning consists in one evaluation of the trained CNN, which does not require time-consuming solution of the forward and adjoint problems. At the same time, our numerical results demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative approaches for PAT from sparse data.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa