Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Immunity ; 54(10): 2172-2176, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626549

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated disease, coronavirus disease 2019 (COVID-19), has caused a devastating pandemic worldwide. Here, we explain basic concepts underlying the transition from an epidemic to an endemic state, where a pathogen is stably maintained in a population. We discuss how the number of infections and the severity of disease change in the transition from the epidemic to the endemic phase and consider the implications of this transition in the context of COVID-19.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , Doenças Endêmicas , COVID-19/prevenção & controle , Suscetibilidade a Doenças/epidemiologia , Suscetibilidade a Doenças/imunologia , Epidemias , Humanos , Imunidade , Prevalência , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Vacinação
2.
Immunity ; 54(6): 1245-1256.e5, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34004140

RESUMO

We examined how baseline CD4+ T cell repertoire and precursor states impact responses to pathogen infection in humans using primary immunization with yellow fever virus (YFV) vaccine. YFV-specific T cells in unexposed individuals were identified by peptide-MHC tetramer staining and tracked pre- and post-vaccination by tetramers and TCR sequencing. A substantial number of YFV-reactive T cells expressed memory phenotype markers and contained expanded clones in the absence of exposure to YFV. After vaccination, pre-existing YFV-specific T cell populations with low clonal diversity underwent limited expansion, but rare populations with a reservoir of unexpanded TCRs generated robust responses. These altered dynamics reorganized the immunodominance hierarchy and resulted in an overall increase in higher avidity T cells. Thus, instead of further increasing the representation of dominant clones, YFV vaccination recruits rare and more responsive T cells. Our findings illustrate the impact of vaccines in prioritizing T cell responses and reveal repertoire reorganization as a key component of effective vaccination.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacina contra Febre Amarela/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Células Cultivadas , Chlorocebus aethiops , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Vacinação/métodos , Células Vero , Febre Amarela/virologia
3.
Nature ; 626(7998): 392-400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086420

RESUMO

An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies1. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections2-6. However, it is unknown whether memory T cells alone can effectively surveil the respiratory tract to the extent that they eliminate or greatly reduce viral transmission following exposure of an individual to infection. Here we use a mouse model of natural parainfluenza virus transmission to quantify the extent to which memory CD8+ T cells resident in the respiratory tract can provide herd immunity by reducing both the susceptibility of acquiring infection and the extent of transmission, even in the absence of virus-specific antibodies. We demonstrate that protection by resident memory CD8+ T cells requires the antiviral cytokine interferon-γ (IFNγ) and leads to altered transcriptional programming of epithelial cells within the respiratory tract. These results suggest that tissue-resident CD8+ T cells in the respiratory tract can have important roles in protecting the host against viral disease and limiting viral spread throughout the population.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Células T de Memória , Infecções por Paramyxoviridae , Sistema Respiratório , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Imunidade Coletiva/imunologia , Memória Imunológica/imunologia , Interferon gama/imunologia , Células T de Memória/imunologia , Paramyxoviridae/imunologia , Paramyxoviridae/fisiologia , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/prevenção & controle , Infecções por Paramyxoviridae/transmissão , Infecções por Paramyxoviridae/virologia , Sistema Respiratório/citologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Transcrição Gênica , Humanos
4.
PLoS Comput Biol ; 19(8): e1011377, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603552

RESUMO

Antibodies and humoral memory are key components of the adaptive immune system. We consider and computationally model mechanisms by which humoral memory present at baseline might increase rather than decrease infection load; we refer to this effect as EI-HM (enhancement of infection by humoral memory). We first consider antibody dependent enhancement (ADE) in which antibody enhances the growth of the pathogen, typically a virus, and typically at intermediate 'Goldilocks' levels of antibody. Our ADE model reproduces ADE in vitro and enhancement of infection in vivo from passive antibody transfer. But notably the simplest implementation of our ADE model never results in EI-HM. Adding complexity, by making the cross-reactive antibody much less neutralizing than the de novo generated antibody or by including a sufficiently strong non-antibody immune response, allows for ADE-mediated EI-HM. We next consider the possibility that cross-reactive memory causes EI-HM by crowding out a possibly superior de novo immune response. We show that, even without ADE, EI-HM can occur when the cross-reactive response is both less potent and 'directly' (i.e. independently of infection load) suppressive with regard to the de novo response. In this case adding a non-antibody immune response to our computational model greatly reduces or completely eliminates EI-HM, which suggests that 'crowding out' is unlikely to cause substantial EI-HM. Hence, our results provide examples in which simple models give qualitatively opposite results compared to models with plausible complexity. Our results may be helpful in interpreting and reconciling disparate experimental findings, especially from dengue, and for vaccination.


Assuntos
Anticorpos Neutralizantes , Vacinação , Reações Cruzadas
5.
J Virol ; 96(9): e0002622, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404084

RESUMO

Humoral immunity is a major component of the adaptive immune response against viruses and other pathogens with pathogen-specific antibody acting as the first line of defense against infection. Virus-specific antibody levels are maintained by continual secretion of antibody by plasma cells residing in the bone marrow. This raises the important question of how the virus-specific plasma cell population is stably maintained and whether memory B cells are required to replenish plasma cells, balancing their loss arising from their intrinsic death rate. In this study, we examined the longevity of virus-specific antibody responses in the serum of mice following acute viral infection with three different viruses: lymphocytic choriomeningitis virus (LCMV), influenza virus, and vesicular stomatitis virus (VSV). To investigate the contribution of memory B cells to the maintenance of virus-specific antibody levels, we employed human CD20 transgenic mice, which allow for the efficient depletion of B cells with rituximab, a human CD20-specific monoclonal antibody. Mice that had resolved an acute infection with LCMV, influenza virus, or VSV were treated with rituximab starting at 2 months after infection, and the treatment was continued for up to a year postinfection. This treatment regimen with rituximab resulted in efficient depletion of B cells (>95%), with virus-specific memory B cells being undetectable. There was an early transient drop in the antibody levels after rituximab treatment followed by a plateauing of the curve with virus-specific antibody levels remaining relatively stable (half-life of 372 days) for up to a year after infection in the absence of memory B cells. The number of virus-specific plasma cells in the bone marrow were consistent with the changes seen in serum antibody levels. Overall, our data show that virus-specific plasma cells in the bone marrow are intrinsically long-lived and can maintain serum antibody titers for extended periods of time without requiring significant replenishment from memory B cells. These results provide insight into plasma cell longevity and have implications for B cell depletion regimens in cancer and autoimmune patients in the context of vaccination in general and especially for COVID-19 vaccines. IMPORTANCE Following vaccination or primary virus infection, virus-specific antibodies provide the first line of defense against reinfection. Plasma cells residing in the bone marrow constitutively secrete antibodies, are long-lived, and can thus maintain serum antibody levels over extended periods of time in the absence of antigen. Our data, in the murine model system, show that virus-specific plasma cells are intrinsically long-lived but that some reseeding by memory B cells might occur. Our findings demonstrate that, due to the longevity of plasma cells, virus-specific antibody levels remain relatively stable in the absence of memory B cells and have implications for vaccination.


Assuntos
Anticorpos Antivirais , Coriomeningite Linfocítica , Células B de Memória , Rituximab , Animais , Anticorpos Antivirais/sangue , Humanos , Imunidade Humoral , Memória Imunológica , Coriomeningite Linfocítica/imunologia , Células B de Memória/citologia , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Plasmócitos/citologia , Infecções por Rhabdoviridae/imunologia , Rituximab/farmacologia
6.
Nature ; 552(7685): 404-409, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29236683

RESUMO

Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Desdiferenciação Celular , Memória Imunológica , Animais , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Epigênese Genética , Feminino , Memória Imunológica/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Bioessays ; 43(4): e2000159, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33448042

RESUMO

The affinities of antibodies (Abs) for their target antigens (Ags) gradually increase in vivo following an infection or vaccination, but reach saturation at values well below those realisable in vitro. This 'affinity ceiling' could in many cases restrict our ability to fight infections and compromise vaccines. What determines the affinity ceiling has been an unresolved question for decades. Here, we argue that it arises from the strength of the chain of protein complexes that is pulled by B cells during the process of Ag acquisition. The affinity ceiling is determined by the strength of the weakest link in the chain. We identify the weakest link and show that the resulting affinity ceiling can explain the Ab affinities realized in vivo, providing a conceptual understanding of Ab affinity maturation. We explore plausible evolutionary underpinnings of the affinity ceiling, examine supporting evidence and alternative hypotheses and discuss implications for vaccination strategies.


Assuntos
Linfócitos B , Centro Germinativo , Afinidade de Anticorpos , Antígenos , Proteínas
8.
Proc Natl Acad Sci U S A ; 117(30): 17957-17964, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661157

RESUMO

There is a need for improved influenza vaccines. In this study we compared the antibody responses in humans after vaccination with an AS03-adjuvanted versus nonadjuvanted H5N1 avian influenza virus inactivated vaccine. Healthy young adults received two doses of either formulation 3 wk apart. We found that AS03 significantly enhanced H5 hemagglutinin (HA)-specific plasmablast and antibody responses compared to the nonadjuvanted vaccine. Plasmablast response after the first immunization was exclusively directed to the conserved HA stem region and came from memory B cells. Monoclonal antibodies (mAbs) derived from these plasmablasts had high levels of somatic hypermutation (SHM) and recognized the HA stem region of multiple influenza virus subtypes. Second immunization induced a plasmablast response to the highly variable HA head region. mAbs derived from these plasmablasts exhibited minimal SHM (naive B cell origin) and largely recognized the HA head region of the immunizing H5N1 strain. Interestingly, the antibody response to H5 HA stem region was much lower after the second immunization, and this suppression was most likely due to blocking of these epitopes by stem-specific antibodies induced by the first immunization. Taken together, these findings show that an adjuvanted influenza vaccine can substantially increase antibody responses in humans by effectively recruiting preexisting memory B cells as well as naive B cells into the response. In addition, we show that high levels of preexisting antibody can have a negative effect on boosting. These findings have implications toward the development of a universal influenza vaccine.


Assuntos
Adjuvantes Imunológicos , Linfócitos B/imunologia , Reações Cruzadas/imunologia , Memória Imunológica , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/metabolismo , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Imunização Secundária , Masculino , Plasmócitos/imunologia , Plasmócitos/metabolismo
9.
PLoS Comput Biol ; 17(2): e1008602, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524036

RESUMO

Many viral infections can be prevented by immunizing with live, attenuated vaccines. Early methods of attenuation were hit-and-miss, now much improved by genetic engineering. However, even current methods operate on the principle of genetic harm, reducing the virus's ability to grow. Reduced viral growth has the undesired side-effect of reducing the host immune response below that of infection with wild-type. Might some methods of attenuation instead lead to an increased immune response? We use mathematical models of the dynamics of virus with innate and adaptive immunity to explore the tradeoff between attenuation of virus pathology and immunity. We find that modification of some virus immune-evasion pathways can indeed reduce pathology yet enhance immunity. Thus, attenuated vaccines can, in principle, be directed to be safe yet create better immunity than is elicited by the wild-type virus.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Viroses/prevenção & controle , Imunidade Adaptativa , Animais , Humanos , Sistema Imunitário , Camundongos , Células Th1/citologia , Células Th2/citologia , Vacinação
10.
PLoS Comput Biol ; 17(10): e1009468, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648489

RESUMO

Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Biologia Computacional , Humanos , Modelos Imunológicos
11.
Proc Natl Acad Sci U S A ; 116(35): 17393-17398, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31413198

RESUMO

Some viral infections culminate in very different outcomes in different individuals. They can be rapidly cleared in some, cause persistent infection in others, and cause mortality from immunopathology in yet others. The conventional view is that the different outcomes arise as a consequence of the complex interactions between a large number of different factors (virus, different immune cells, and cytokines). Here, we identify a simple dynamical motif comprising the essential interactions between antigens and CD8 T cells and posit it as predominantly determining the outcomes. Viral antigen can activate CD8 T cells, which in turn, can kill infected cells. Sustained antigen stimulation, however, can cause CD8 T-cell exhaustion, compromising effector function. Using mathematical modeling, we show that the motif comprising these interactions recapitulates all of the outcomes observed. The motif presents a conceptual framework to understand the variable outcomes of infection. It also explains a number of confounding experimental observations, including the variation in outcomes with the viral inoculum size, the evolutionary advantage of exhaustion in preventing lethal pathology, the ability of natural killer (NK) cells to act as rheostats tuning outcomes, and the role of the innate immune response in the spontaneous clearance of hepatitis C. Interventions that modulate the interactions in the motif may present routes to clear persistent infections or limit immunopathology.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Teóricos , Viroses/imunologia , Viroses/metabolismo , Algoritmos , Animais , Antígenos Virais/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Viroses/virologia
12.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32759317

RESUMO

Recent studies on chronic viral infections have defined a novel programmed cell death 1-positive (PD-1+) T cell factor 1-positive (TCF1+) stem-like CD8 T cell subset that gives rise to the terminally differentiated exhausted CD8 T cells. In this study, we performed T cell receptor beta (TCRß) sequencing of virus-specific CD8 T cells during chronic lymphocytic choriomeningitis virus (LCMV) infection to examine the TCR diversity and lineage relationship of these two functionally distinct subsets. We found that >95% of the TCR repertoire of the exhausted CD8 T cell subset was shared with the stem-like CD8 T cells. The TCR repertoires of both CD8 T cell subsets were composed mostly of a few dominant clonotypes, but there was slightly more breadth and diversity in the stem-like CD8 T cells than their exhausted counterpart (∼40 versus ∼15 GP33+ clonotypes; ∼20 versus ∼7 GP276+ clonotypes). Interestingly, the breadth of the TCR repertoire was broader during the early stages (day 8) of the chronic infection than the later stages (days 45 to 60), showing that there was a narrowing of the TCR repertoire during chronic infection (∼2-fold GP33+ and GP276+ stem-like subset; ∼10-fold GP33+ and ∼5-fold GP276+ exhausted subset). In contrast, during acute LCMV infection, the TCR repertoire was much broader in both GP33-specific effector (∼160 clonotypes) and memory CD8 T cells (∼160 clonotypes). Overall, our data demonstrate that the virus-specific CD8 T cell TCR repertoire is broad and remains stable after acute LCMV infection, but it contracts and is narrower during chronic infection. Our study also shows that the repertoire of the exhausted CD8 T cell subset is almost completely derived from the stem-like CD8 T cell subset during established chronic LCMV infection.IMPORTANCE CD8 TCR repertoires responding to chronic viral infections (HIV, hepatitis C virus [HCV], Epstein-Barr virus [EBV], and cytomegalovirus [CMV]) have limited breadth and diversity. How these repertoires change and are maintained throughout the chronic infection are unknown. We thus characterized the LCMV-specific CD8 TCR repertoires of stem-like and terminally exhausted subsets generated during chronic LCMV infections. During chronic LCMV infections, the repertoires started as diverse but became more clonal at the late time point. Further, the exhausted subset was composed of dominant clonotypes that were shared with the stem-like subset. Together, we demonstrate that the TCR repertoire contracts over time and is almost exclusively derived from the stem-like subset late during the persistent viral infection. Our data suggest that dominant clonotypes in the exhausted subset are derived from a diverse pool of stem-like clonotypes, which may be contributing to the clonality observed during chronic viral infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Doença Crônica , Feminino , Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Receptores de Antígenos de Linfócitos T/genética
13.
PLoS Biol ; 16(8): e2005712, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30130363

RESUMO

In the malaria parasite P. falciparum, drug resistance generally evolves first in low-transmission settings, such as Southeast Asia and South America. Resistance takes noticeably longer to appear in the high-transmission settings of sub-Saharan Africa, although it may spread rapidly thereafter. Here, we test the hypothesis that competitive suppression of drug-resistant parasites by drug-sensitive parasites may inhibit evolution of resistance in high-transmission settings, where mixed-strain infections are common. We employ a cross-scale model, which simulates within-host (infection) dynamics and between-host (transmission) dynamics of sensitive and resistant parasites for a population of humans and mosquitoes. Using this model, we examine the effects of transmission intensity, selection pressure, fitness costs of resistance, and cross-reactivity between strains on the establishment and spread of resistant parasites. We find that resistant parasites, introduced into the population at a low frequency, are more likely to go extinct in high-transmission settings, where drug-sensitive competitors and high levels of acquired immunity reduce the absolute fitness of the resistant parasites. Under strong selection from antimalarial drug use, however, resistance spreads faster in high-transmission settings than low-transmission ones. These contrasting results highlight the distinction between establishment and spread of resistance and suggest that the former but not the latter may be inhibited in high-transmission settings. Our results suggest that within-host competition is a key factor shaping the evolution of drug resistance in P. falciparum.


Assuntos
Adaptação Biológica/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Plasmodium falciparum/fisiologia , África Subsaariana , Animais , Antimaláricos/uso terapêutico , Culicidae , Transmissão de Doença Infecciosa , Resistência a Medicamentos , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/fisiologia , Humanos , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , América do Sul
14.
PLoS Biol ; 16(8): e2006601, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096134

RESUMO

Determining the duration of protective immunity requires quantifying the magnitude and rate of loss of antibodies to different virus and vaccine antigens. A key complication is heterogeneity in both the magnitude and decay rate of responses of different individuals to a given vaccine, as well as of a given individual to different vaccines. We analyzed longitudinal data on antibody titers in 45 individuals to characterize the extent of this heterogeneity and used models to determine how it affected the longevity of protective immunity to measles, rubella, vaccinia, tetanus, and diphtheria. Our analysis showed that the magnitude of responses in different individuals varied between 12- and 200-fold (95% coverage) depending on the antigen. Heterogeneity in the magnitude and decay rate contribute comparably to variation in the longevity of protective immunity between different individuals. We found that some individuals have, on average, slightly longer-lasting memory than others-on average, they have higher antibody levels with slower decay rates. We identified different patterns for the loss of protective levels of antibodies to different vaccine and virus antigens. Specifically, we found that for the first 25 to 50 years, virtually all individuals have protective antibody titers against diphtheria and tetanus, respectively, but about 10% of the population subsequently lose protective immunity per decade. In contrast, at the outset, not all individuals had protective titers against measles, rubella, and vaccinia. However, these antibody titers wane much more slowly, with a loss of protective immunity in only 1% to 3% of the population per decade. Our results highlight the importance of long-term longitudinal studies for estimating the duration of protective immunity and suggest both how vaccines might be improved and how boosting schedules might be reevaluated.


Assuntos
Anticorpos Antivirais/fisiologia , Anticorpos/fisiologia , Memória Imunológica/fisiologia , Adolescente , Adulto , Anticorpos/metabolismo , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Imunização Secundária , Memória Imunológica/imunologia , Estudos Longitudinais , Masculino , Vírus/imunologia , Adulto Jovem
15.
J Immunol ; 203(5): 1252-1264, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375545

RESUMO

Somatic hypermutation generates a myriad of Ab mutants in Ag-specific B cells, from which high-affinity mutants are selected. Chickens, sheep, and rabbits use nontemplated point mutations and templated mutations via gene conversion to diversify their expressed Ig loci, whereas mice and humans rely solely on untemplated somatic point mutations. In this study, we demonstrate that, in addition to untemplated point mutations, templated mutagenesis readily occurs at the murine and human Ig loci. We provide two distinct lines of evidence that are not explained by the Neuberger model of somatic hypermutation: 1) across multiple data sets there is significant linkage disequilibrium between individual mutations, especially among close mutations, and 2) among those mutations, those <8 bp apart are significantly more likely to match microhomologous regions in the IgHV repertoire than predicted by the mutation profiles of somatic hypermutation. Together, this supports the role of templated mutagenesis during somatic diversification of Ag-activated B cells.


Assuntos
Ligação Genética , Loci Gênicos , Cadeias Pesadas de Imunoglobulinas/genética , Mutagênese , Hipermutação Somática de Imunoglobulina , Animais , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Centro Germinativo/imunologia , Humanos , Região Variável de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Plasmócitos/imunologia
16.
Clin Infect Dis ; 70(6): 1029-1037, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31056675

RESUMO

BACKGROUND: The effectiveness of the live-attenuated influenza vaccine (LAIV) can vary widely, ranging from 0% to 50%. The reasons for these discrepancies remain largely unclear. METHODS: We use mathematical models to explore how the efficacy of LAIV is affected by the degree of mismatch with the currently circulating influenza strain and interference with pre-existing immunity. The models incorporate 3 key antigenic distances: the distances between the vaccine strain, pre-existing immunity, and the challenge strain. RESULTS: Our models show that an LAIV that is matched with the currently circulating strain is likely to have only modest efficacy. Our results suggest that the efficacy of the vaccine would be increased (optimized) if, rather than being matched to the circulating strain, it is antigenically slightly further from pre-existing immunity than the circulating strain. The models also suggest 2 regimes in which LAIV that is matched to circulating strains may be protective: in children before they have built immunity to circulating strains and in response to novel strains (such as antigenic shifts) which are at substantial antigenic distance from previously circulating strains. We provide an explanation for the variation in vaccine effectiveness between studies and countries of vaccine effectiveness observed during the 2014-2015 influenza season. CONCLUSIONS: LAIV is offered to children across the world; however, its effectiveness significantly varies between studies. Here, we propose a mechanistic explanation to understand these differences. We further propose a way to select the LAIV strain that would have a higher chance of being protective.


Assuntos
Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Influenza Humana/prevenção & controle , Vacinas Atenuadas
17.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626684

RESUMO

The high degree of conservation of CD8 T cell epitopes of influenza A virus (IAV) may allow for the development of T cell-inducing vaccines that provide protection across different strains and subtypes. This conservation is not fully explained by functional constraint, since an additional mutation(s) can compensate for the replicative fitness loss of IAV escape variants. Here, we propose three additional mechanisms that contribute to the conservation of CD8 T cell epitopes of IAV. First, influenza-specific CD8 T cells may protect predominantly against severe pathology rather than infection and may have only a modest effect on transmission. Second, polymorphism of the human major histocompatibility complex class I (MHC-I) gene restricts the advantage of an escape variant to only a small fraction of the human population who carry the relevant MHC-I alleles. Finally, infection with CD8 T cell escape variants may result in a compensatory increase in the responses to other epitopes of IAV. We use a combination of population genetics and epidemiological models to examine how the interplay between these mechanisms affects the rate of invasion of IAV escape variants. We conclude that for a wide range of biologically reasonable parameters, the invasion of an escape variant virus will be slow, with a timescale of a decade or more. The results suggest T cell-inducing vaccines do not engender the rapid evolution of IAV. Finally, we identify key parameters whose measurement will allow for more accurate quantification of the long-term effectiveness and impact of universal T cell-inducing influenza vaccines.IMPORTANCE Universal influenza vaccines against the conserved epitopes of influenza A virus have been proposed to minimize the burden of seasonal outbreaks and prepare for the pandemics. However, it is not clear how rapidly T cell-inducing vaccines will select for viruses that escape these T cell responses. Our mathematical models explore the factors that contribute to the conservation of CD8 T cell epitopes and how rapidly the virus will evolve in response to T cell-inducing vaccines. We identify the key biological parameters to be measured and questions that need to be addressed in future studies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Vacinas contra Influenza/imunologia , Pandemias
18.
PLoS Comput Biol ; 15(7): e1006857, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31323032

RESUMO

Replicating recombinant vector vaccines consist of a fully competent viral vector backbone engineered to express an antigen from a foreign transgene. From the perspective of viral replication, the transgene is not only dispensable but may even be detrimental. Thus vaccine revertants that delete or inactivate the transgene may evolve to dominate the vaccine virus population both during the process of manufacture of the vaccine as well as during the course of host infection. A particular concern is that this vaccine evolution could reduce its antigenicity-the immunity elicited to the transgene. We use mathematical and computational models to study vaccine evolution and immunity. These models include evolution arising during the process of manufacture, the dynamics of vaccine and revertant growth, plus innate and adaptive immunity elicited during the course of infection. Although the selective basis of vaccine evolution is easy to comprehend, the immunological consequences are not. One complication is that the opportunity for vaccine evolution is limited by the short period of within-host growth before the viral population is cleared. Even less obvious, revertant growth may only weakly interfere with vaccine growth in the host and thus have a limited effect on immunity to vaccine. Overall, we find that within-host vaccine evolution can sometimes compromise vaccine immunity, but only when the extent of evolution during vaccine manufacture is severe, and this evolution can be easily avoided or mitigated.


Assuntos
Vacinas Sintéticas/química , Vacinas Virais/imunologia , Animais , Humanos , Vacinas Sintéticas/imunologia
19.
Bull Math Biol ; 82(3): 35, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32125535

RESUMO

It is difficult to determine whether an immune response or target cell depletion by the infectious agent is most responsible for the control of acute primary infection. Both mechanisms can explain the basic dynamics of an acute infection-exponential growth of the pathogen followed by control and clearance-and can also be represented by many different differential equation models. Consequently, traditional model comparison techniques using time series data can be ambiguous or inconclusive. We propose that varying the inoculum dose and measuring the subsequent infectious load can rule out target cell depletion by the pathogen as the main control mechanism. Infectious load can be any measure that is proportional to the number of infected cells, such as viraemia. We show that a twofold or greater change in infectious load is unlikely when target cell depletion controls infection, regardless of the model details. Analyzing previously published data from mice infected with influenza, we find the proportion of lung epithelial cells infected was 21-fold greater (95% confidence interval 14-32) in the highest dose group than in the lowest. This provides evidence in favor of an alternative to target cell depletion, such as innate immunity, in controlling influenza infections in this experimental system. Data from other experimental animal models of acute primary infection have a similar pattern.


Assuntos
Modelos Imunológicos , Viroses/imunologia , Viroses/virologia , Imunidade Adaptativa , Animais , Modelos Animais de Doenças , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata , Conceitos Matemáticos , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Carga Viral
20.
PLoS Comput Biol ; 14(10): e1006505, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30273336

RESUMO

Vaccination is an effective method to protect against infectious diseases. An important consideration in any vaccine formulation is the inoculum dose, i.e., amount of antigen or live attenuated pathogen that is used. Higher levels generally lead to better stimulation of the immune response but might cause more severe side effects and allow for less population coverage in the presence of vaccine shortages. Determining the optimal amount of inoculum dose is an important component of rational vaccine design. A combination of mathematical models with experimental data can help determine the impact of the inoculum dose. We illustrate the concept of using data and models to inform inoculum dose determination for vaccines, wby fitting a mathematical model to data from influenza A virus (IAV) infection of mice and human parainfluenza virus (HPIV) infection of cotton rats at different inoculum doses. We use the model to map inoculum dose to the level of immune protection and morbidity and to explore how such a framework might be used to determine an optimal inoculum dose. We show how a framework that combines mathematical models with experimental data can be used to study the impact of inoculum dose on important outcomes such as immune protection and morbidity. Our findings illustrate that the impact of inoculum dose on immune protection and morbidity can depend on the specific pathogen and that both protection and morbidity do not necessarily increase monotonically with increasing inoculum dose. Once vaccine design goals are specified with required levels of protection and acceptable levels of morbidity, our proposed framework can help in the rational design of vaccines and determination of the optimal amount of inoculum.


Assuntos
Relação Dose-Resposta Imunológica , Interações Hospedeiro-Patógeno/imunologia , Modelos Imunológicos , Vacinas/administração & dosagem , Vacinas/imunologia , Animais , Biologia Computacional , Desenho de Fármacos , Humanos , Camundongos , Ratos , Carga Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa