Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 247: 110031, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128668

RESUMO

Our previous studies have shown the benefit of intravitreal injection of a mesenchymal stem cell (MSC)- derived secretome to treat visual deficits in a mild traumatic brain injury (mTBI) mouse model. In this study, we have addressed whether MSC-derived extracellular vesicles (EV) overexpressing miR424, which particularly targets neuroinflammation, show similar benefits in the mTBI model. Adult C57BL/6 mice were subjected to a 50-psi air pulse on the left side, overlying the forebrain, resulting in mTBI. Sham-blast mice were controls. Within an hour of blast injury, 3 µl (∼7.5 × 108 particles) of miR424-EVs, native-EVs, or saline was delivered intravitreally. One month later, retinal morphology was observed through optical coherence tomography (OCT); visual function was assessed using optokinetic nystagmus (OKN) and electroretinogram (ERG), followed by immunohistological analysis. A separate study in adult mice tested the dose-response of EVs for safety. Blast injury mice with saline showed decreased visual acuity compared with the sham group (0.30 ± 0.03 vs. 0.39 ± 0.01 c/d, p < 0.02), improved with miR424-EVs (0.39 ± 0.02 c/d, p < 0.01) but not native-EVs (0.33 ± 0.04 c/d, p > 0.05). Contrast sensitivity thresholds of blast mice receiving saline increased compared with the sham group (85.3 ± 5.9 vs. 19.9 ± 4.8, %, p < 0.001), rescued by miR424-EVs (23.6 ± 7.3 %, p < 0.001) and native-EVs (45.6 ± 10.7 %, p < 0.01). Blast injury decreased "b" wave amplitude compared to sham mice (94.6 ± 24.0 vs. 279.2 ± 25.3 µV, p < 0.001), improved with miR424-EVs (173.0 ± 27.2 µV, p < 0.03) and native-EVs (230.2 ± 37.2 µV, p < 0.01) with a similar decrease in a-wave amplitude in blast mice improved with both miR424-EVs and native-EVs. Immunohistology showed increased GFAP and IBA1 in blast mice with saline compared with sham (GFAP: 11.9 ± 1.49 vs. 9.1 ± 0.8, mean intensity/100,000 µm2 area, p < 0.03; IBA1: 36.08 ± 4.3 vs. 24.0 ± 1.54, mean intensity/100,000 µm2 area, p < 0.01), with no changes with native-EVs (GFAP: 12.6 ± 0.79, p > 0.05; IBA1: 32.8 ± 2.9, p > 0.05), and miR424-EV (GFAP: 13.14 ± 0.76, p > 0.05; IBA1: 31.4 ± 2.7, p > 0.05). Both native-EVs and miR424-EVs exhibited vitreous aggregation, as evidenced by particulates in the vitreous by OCT, and increased vascular structures, as evidenced by αSMA and CD31 immunostainings. The number of capillary lumens in the ganglion cell layer increased with increased particles in the eye, with native EVs showing the worst effects. In conclusion, our study highlights the promise of EV-based therapies for treating visual dysfunction caused by mTBI, with miR424-EVs showing particularly strong neuroprotective benefits. Both miR424-EVs and native-EVs provided similar protection, but issues with EV aggregation and astrogliosis or microglial/macrophage activation at the current dosage call for improved delivery methods and dosage adjustments. Future research should investigate the mechanisms behind EVs' effects and optimize miR424 delivery strategies to enhance therapeutic outcomes and reduce complications.


Assuntos
Traumatismos por Explosões , Modelos Animais de Doenças , Eletrorretinografia , Vesículas Extracelulares , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , MicroRNAs , Tomografia de Coerência Óptica , Animais , Vesículas Extracelulares/metabolismo , Camundongos , MicroRNAs/genética , Traumatismos por Explosões/terapia , Traumatismos por Explosões/fisiopatologia , Traumatismos por Explosões/metabolismo , Traumatismos por Explosões/complicações , Células-Tronco Mesenquimais/metabolismo , Masculino , Nistagmo Optocinético/fisiologia , Injeções Intravítreas , Acuidade Visual/fisiologia , Transtornos da Visão/fisiopatologia , Transtornos da Visão/etiologia , Transtornos da Visão/terapia , Transplante de Células-Tronco Mesenquimais/métodos
2.
Cell J ; 25(5): 327-337, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37300294

RESUMO

OBJECTIVE: Traumatic optic neuropathy (TON) causes partial or complete blindness because death of irreplaceable retinal ganglion cells (RGCs). Neuroprotective functions of erythropoietin (EPO) in the nervous system have been considered by many studies investigating effectiveness of this cytokine in various retinal disease models. It has been found that changes in retinal neurons under conditions of glial cells are effective in vision loss, therefore, the present study hypothesized that EPO neuroprotective effect could be mediated through glial cells in TON model. MATERIALS AND METHODS: In this experiment study, 72 rats were assessed in the following groups: intact and optic nerve crush which received either the 4000 IU EPO or saline. Visual evoked potential and optomotor response and RGC number were assessed and regenerated axons evaluated by anterograde test. Cytokines gene expression changes were compared by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Density of astrocytes cells, assessed by fluorescence intensity, in addition, possible cytotoxic effect of EPO was measured on mouse astrocyte culture in vitro. RESULTS: in vitro data showed that EPO was not toxic for mouse astrocytes. Intravenous injection of EPO improved vision, in terms of visual behavioral tests. RGCs protection was more than two times in EPO, compared to the vehicle group. More regenerated axons were determined by anterograde tracing in the EPO group compared to the vehicle. Moreover, GFAP immunostaining showed while the intensity of reactive astrocytes was increased in injured retina, systemic EPO decreased it. In the treatment group, expression of GFAP was down-regulated, while CNTF was upregulated as assessed by qRT-PCR in the 60th day post-crush. CONCLUSION: Our study showed that systemic administration of EPO can protect degenerating RGCs. Indeed, exogenous EPO exerted neuroprotective and neurotrophic functions by reducing reactive astrocytic gliosis. Therefore, reduction of gliosis by EPO may be considered as therapeutic targets for TON.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa