Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7966): 712-715, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286602

RESUMO

The most massive and shortest-lived stars dominate the chemical evolution of the pre-galactic era. On the basis of numerical simulations, it has long been speculated that the mass of such first-generation stars was up to several hundred solar masses1-4. The very massive first-generation stars with a mass range from 140 to 260 solar masses are predicted to enrich the early interstellar medium through pair-instability supernovae (PISNe)5. Decades of observational efforts, however, have not been able to uniquely identify the imprints of such very massive stars on the most metal-poor stars in the Milky Way6,7. Here we report the chemical composition of a very metal-poor (VMP) star with extremely low sodium and cobalt abundances. The sodium with respect to iron in this star is more than two orders of magnitude lower than that of the Sun. This star exhibits very large abundance variance between the odd- and even-charge-number elements, such as sodium/magnesium and cobalt/nickel. Such peculiar odd-even effect, along with deficiencies of sodium and α elements, are consistent with the prediction of primordial pair-instability supernova (PISN) from stars more massive than 140 solar masses. This provides a clear chemical signature indicating the existence of very massive stars in the early universe.

2.
Nature ; 518(7539): 381-4, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25693569

RESUMO

The origin of lithium (Li) and its production process have long been uncertain. Li could be produced by Big Bang nucleosynthesis, interactions of energetic cosmic rays with interstellar matter, evolved low-mass stars, novae, and supernova explosions. Chemical evolution models and observed stellar Li abundances suggest that at least half the Li may have been produced in red giants, asymptotic giant branch (AGB) stars, and novae. No direct evidence, however, for the supply of Li from evolved stellar objects to the Galactic medium has hitherto been found. Here we report the detection of highly blue-shifted resonance lines of the singly ionized radioactive isotope of beryllium, (7)Be, in the near-ultraviolet spectra of the classical nova V339 Del (Nova Delphini 2013) 38 to 48 days after the explosion. (7)Be decays to form (7)Li within a short time (half-life of 53.22 days). The (7)Be was created during the nova explosion via the alpha-capture reaction (3)He(α,γ)(7)Be (ref. 5). This result supports the theoretical prediction that a significant amount of (7)Li is produced in classical nova explosions.

3.
Nature ; 434(7035): 871-3, 2005 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-15829957

RESUMO

The chemically most primitive stars provide constraints on the nature of the first stellar objects that formed in the Universe; elements other than hydrogen, helium and traces of lithium present within these objects were generated by nucleosynthesis in the very first stars. The relative abundances of elements in the surviving primitive stars reflect the masses of the first stars, because the pathways of nucleosynthesis are quite sensitive to stellar masses. Several models have been suggested to explain the origin of the abundance pattern of the giant star HE0107-5240, which hitherto exhibited the highest deficiency of heavy elements known. Here we report the discovery of HE1327-2326, a subgiant or main-sequence star with an iron abundance about a factor of two lower than that of HE0107-5240. Both stars show extreme overabundances of carbon and nitrogen with respect to iron, suggesting a similar origin of the abundance patterns. The unexpectedly low Li and high Sr abundances of HE1327-2326, however, challenge existing theoretical understanding: no model predicts the high Sr abundance or provides a Li depletion mechanism consistent with data available for the most metal-poor stars.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa