RESUMO
RNAs are commonly categorized as being either protein-coding mRNAs or noncoding RNAs. However, an increasing number of transcripts, in organisms ranging from bacteria to humans, are being found to have both coding and noncoding functions. In some cases, the sequences encoding the protein and the regulatory RNA functions are separated, while in other cases the sequences overlap. The protein and RNA can regulate similar or distinct pathways. Here we describe examples illustrating how these dual-function (also denoted bifunctional or dual-component) RNAs are identified and their mechanisms of action and cellular roles. We also discuss the synergy or competition between coding and RNA activity and how these regulators evolved, as well as how more dual-function RNAs might be discovered and exploited.
Assuntos
RNA Longo não Codificante , RNA , Humanos , RNA não Traduzido , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Bactérias/metabolismo , RNA Longo não Codificante/genéticaRESUMO
SignificanceDual-function RNAs base pair with target messenger RNAs as small regulatory RNAs and encode small protein regulators. However, only a limited number of these dual-function regulators have been identified. In this study, we show that a well-characterized base-pairing small RNA surprisingly also encodes a 15-amino acid protein. The very small protein binds the cyclic adenosine monophosphate receptor protein transcription factor to block activation of some promoters, raising the question of how many other transcription factors are modulated by unidentified small proteins.
Assuntos
Aminoácidos/química , Proteínas de Escherichia coli/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Fatores de Transcrição/metabolismo , Pareamento de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucose/metabolismo , Histidina/metabolismo , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , TemperaturaRESUMO
SignificanceWhile most small, regulatory RNAs are thought to be "noncoding," a few have been found to also encode a small protein. Here we describe a 164-nucleotide RNA that encodes a 28-amino acid, amphipathic protein, which interacts with aerobic glycerol-3-phosphate dehydrogenase and increases dehydrogenase activity but also base pairs with two mRNAs to reduce expression. The coding and base-pairing sequences overlap, and the two regulatory functions compete.
Assuntos
Carbono/metabolismo , Escherichia coli/metabolismo , RNA Bacteriano/fisiologia , Meios de Cultura , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Galactose/metabolismo , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismoRESUMO
Small base pairing RNAs (sRNAs) and small proteins comprise two classes of regulators that allow bacterial cells to adapt to a wide variety of growth conditions. A limited number of transcripts encoding both of these activities, regulation of mRNA expression by base pairing and synthesis of a small regulatory protein, have been identified. Given that few have been characterized, little is known about the interplay between the two regulatory functions. To investigate the competition between the two activities, we constructed synthetic dual-function RNAs, hereafter referred to as MgtSR or MgtRS, comprised of the Escherichia coli sRNA MgrR and the open reading frame encoding the small protein MgtS. MgrR is a 98 nt base pairing sRNA that negatively regulates eptB encoding phosphoethanolamine transferase. MgtS is a 31 aa small inner membrane protein that is required for the accumulation of MgtA, a magnesium (Mg2+) importer. Expression of the separate genes encoding MgrR and MgtS is normally induced in response to low Mg2+ by the PhoQP two-component system. By generating various versions of this synthetic dual-function RNA, we probed how the organization of components and the distance between the coding and base pairing sequences contribute to the proper function of both activities of a dual-function RNA. By understanding the features of natural and synthetic dual-function RNAs, future synthetic molecules can be designed to maximize their regulatory impact. IMPORTANCE Dual-function RNAs in bacteria encode a small protein and also base pair with mRNAs to act as small, regulatory RNAs. Given that only a limited number of dual-function RNAs have been characterized, further study of these regulators is needed to increase understanding of their features. This study demonstrates that a functional synthetic dual-regulator can be constructed from separate components and used to study the functional organization of dual-function RNAs, with the goal of exploiting these regulators.