Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J Synchrotron Radiat ; 28(Pt 1): 350-361, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399587

RESUMO

For the High-Energy-Density (HED) beamline at the SASE2 undulator of the European XFEL, a hard X-ray split-and-delay unit (SDU) has been built enabling time-resolved pump/probe experiments with photon energies between 5 keV and 24 keV. The optical layout of the SDU is based on geometrical wavefront splitting and multilayer Bragg mirrors. Maximum delays between Δτ = ±1 ps at 24 keV and Δτ = ±23 ps at 5 keV will be possible. Time-dependent wavefront propagation simulations were performed by means of the Synchrotron Radiation Workshop (SRW) software in order to investigate the impact of the optical layout, including diffraction on the beam splitter and recombiner edges and the three-dimensional topography of all eight mirrors, on the spatio-temporal properties of the XFEL pulses. The radiation is generated from noise by the code FAST which simulates the self-amplified spontaneous emission (SASE) process. A fast Fourier transformation evaluation of the disturbed interference pattern yields for ideal mirror surfaces a coherence time of τc = 0.23 fs and deduces one of τc = 0.21 fs for the real mirrors, thus with an error of Δτ = 0.02 fs which is smaller than the deviation resulting from shot-to-shot fluctuations of SASE2 pulses. The wavefronts are focused by means of compound refractive lenses in order to achieve fluences of a few hundred mJ mm-2 within a spot width of 20 µm (FWHM) diameter. Coherence effects and optics imperfections increase the peak intensity between 200 and 400% for pulse delays within the coherence time. Additionally, the influence of two off-set mirrors in the HED beamline are discussed. Further, we show the fluence distribution for Δz = ±3 mm around the focal spot along the optical axis. The simulations show that the topographies of the mirrors of the SDU are good enough to support X-ray pump/X-ray probe experiments.

2.
J Synchrotron Radiat ; 28(Pt 3): 688-706, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949979

RESUMO

The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump-probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.

3.
Conscious Cogn ; 83: 102960, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32526491

RESUMO

Dreams in which the dreamer is aware of the dream state (lucid dreams, LD) are difficult to induce in naïve subjects in-laboratory. Recently, Stumbrys and Erlacher (2014) used a combination of existing induction techniques together with a self-developed experiment protocol and achieved comparatively high LD induction rates. In this study, we simplified their methodology slightly and repeated their experiment with twenty naïve subjects who spent one or two nights in our sleep laboratory. After about six hours of sleep, they were woken up during REM sleep and engaged in a series of cognitive tasks before going back to bed. Ten subjects reported a LD during the following period of sleep in one of the nights. Eight of these subjects gave a predefined eye signal, which was clearly visible in the electrooculogram during REM sleep. In summary, we replicated Stumbrys and Erlacher's results using a simplified version of their induction protocol.


Assuntos
Sonhos/fisiologia , Sono REM/fisiologia , Adulto , Feminino , Humanos , Masculino , Polissonografia , Adulto Jovem
4.
J Biol Inorg Chem ; 19(7): 1209-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25027680

RESUMO

Our previous studies carried out on the pilocarpine model of seizures showed that highly resolved elemental analysis might be very helpful in the investigation of processes involved in the pathogenesis of epilepsy, such as excitotoxicity or mossy fiber sprouting. In this study, the changes in elemental composition that occurred in the hippocampal formation in the electrical kindling model of seizures were examined to determine the mechanisms responsible for the phenomenon of kindling and spontaneous seizure activity that may occur in this animal model. X-ray fluorescence microscopy was applied for topographic and quantitative analysis of selected elements in tissues taken from rats subjected to repetitive transauricular electroshocks (ES) and controls (N). The detailed comparisons were carried out for sectors 1 and 3 of the Ammon's horn (CA1 and CA3, respectively), the dentate gyrus (DG) and hilus of DG. The obtained results showed only one statistically significant difference between ES and N groups, namely a higher level of Fe was noticed in CA3 region in the kindled animals. However, further analysis of correlations between the elemental levels and quantitative parameters describing electroshock-induced tonic and clonic seizures showed that the areal densities of some elements (Ca, Cu, Zn) strongly depended on the progress of kindling process. The areal density of Cu in CA1 decreased with the cumulative (totaled over 21 stimulation days) intensity and duration of electroshock-induced tonic seizures while Zn level in the hilus of DG was positively correlated with the duration and intensity of both tonic and clonic seizures.


Assuntos
Eletrochoque/efeitos adversos , Hipocampo/patologia , Convulsões/etiologia , Convulsões/patologia , Animais , Cálcio/análise , Cobre/análise , Modelos Animais de Doenças , Elementos Químicos , Excitação Neurológica , Masculino , Microscopia de Fluorescência , Ratos , Ratos Wistar , Espectrometria por Raios X , Raios X , Zinco/análise
5.
Atmos Chem Phys ; 23(14): 8119-8147, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37942278

RESUMO

The fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4) is conducting a diagnostic intercomparison and evaluation of deposition simulated by regional-scale air quality models over North America and Europe. In this study, we analyze annual AQMEII4 simulations performed with the Community Multiscale Air Quality Model (CMAQ) version 5.3.1 over North America. These simulations were configured with both the M3Dry and Surface Tiled Aerosol and Gas Exchange (STAGE) dry deposition schemes available in CMAQ. A comparison of observed and modeled concentrations and wet deposition fluxes shows that the AQMEII4 CMAQ simulations perform similarly to other contemporary regional-scale modeling studies. During summer, M3Dry has higher ozone (O3) deposition velocities (Vd) and lower mixing ratios than STAGE for much of the eastern U.S. while the reverse is the case over eastern Canada and along the West Coast. In contrast, during winter STAGE has higher O3 Vd and lower mixing ratios than M3Dry over most of the southern half of the modeling domain while the reverse is the case for much of the northern U.S. and southern Canada. Analysis of the diagnostic variables defined for the AQMEII4 project, i.e. grid-scale and land-use (LU) specific effective conductances and deposition fluxes for the major dry deposition pathways, reveals generally higher summertime stomatal and wintertime cuticular grid-scale effective conductances for M3Dry and generally higher soil grid-scale effective conductances (for both vegetated and bare soil) for STAGE in both summer and winter. On a domain-wide basis, the stomatal grid-scale effective conductances account for about half of the total O3 Vd during daytime hours in summer for both schemes. Employing LU-specific diagnostics, results show that daytime Vd varies by a factor of 2 between LU categories. Furthermore, M3Dry vs. STAGE differences are most pronounced for the stomatal and vegetated soil pathway for the forest LU categories, with M3Dry estimating larger effective conductances for the stomatal pathway and STAGE estimating larger effective conductances for the vegetated soil pathway for these LU categories. Annual domain total O3 deposition fluxes differ only slightly between M3Dry (74.4 Tg/year) and STAGE (76.2 Tg/yr), but pathway-specific fluxes to individual LU types can vary more substantially on both annual and seasonal scales which would affect estimates of O3 damages to sensitive vegetation. A comparison of two simulations differing only in their LU classification scheme shows that the differences in LU cause seasonal mean O3 mixing ratio differences on the order of 1 ppb across large portions of the domain, with the differences generally largest during summer and in areas characterized by the largest differences in the fractional coverages of the forest, planted/cultivated, and grassland LU categories. These differences are generally smaller than the M3Dry vs. STAGE differences outside the summer season but have a similar magnitude during summer. Results indicate that the deposition impacts of LU differences are caused both by differences in the fractional coverages and spatial distributions of different LU categories as well as the characterization of these categories through variables like surface roughness and vegetation fraction in look-up tables used in the land-surface model and deposition schemes. Overall, the analyses and results presented in this study illustrate how the diagnostic grid-scale and LU-specific dry deposition variables adopted for AQMEII4 can provide insights into similarities and differences between the CMAQ M3Dry and STAGE dry deposition schemes that affect simulated pollutant budgets and ecosystem impacts from atmospheric pollution.

6.
Data Brief ; 47: 109022, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36942100

RESUMO

The United States Environmental Protection Agency (US EPA) has developed a set of annual North American emissions data for multiple air pollutants across 18 broad source categories for 2002 through 2017. The sixteen new annual emissions inventories were developed using consistent input data and methods across all years. When a consistent method or tool was not available for a source category, emissions were estimated by scaling data from the EPA's 2017 National Emissions Inventory with scaling factors based on activity data and/or emissions control information. The emissions datasets are designed to support regional air quality modeling for a wide variety of human health and ecological applications. The data were developed to support simulations of the EPA's Community Multiscale Air Quality model but can also be used by other regional scale air quality models. The emissions data are one component of EPA's Air Quality Time Series Project which also includes air quality modeling inputs (meteorology, initial conditions, boundary conditions) and outputs (e.g., ozone, PM2.5 and constituent species, wet and dry deposition) for the Conterminous US at a 12 km horizontal grid spacing.

7.
J Biol Inorg Chem ; 17(5): 731-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22447169

RESUMO

There is growing experimental evidence that tracing the elements involved in brain hyperexcitability, excitotoxicity, and/or subsequent neurodegeneration could be a valuable source of data on the molecular mechanisms triggering or promoting further development of epilepsy. The most frequently used experimental model of the temporal lobe epilepsy observed in clinical practice is the one based on pilocarpine-induced seizures. In the frame of this study, the elemental anomalies occurring for the rat hippocampal tissue in acute and silent periods after injection of pilocarpine in rats were compared. X-ray fluorescence microscopy was applied for the topographic and quantitative elemental analysis. The differences in the levels of elements such as P, S, K, Ca, Fe, Cu, and Zn between the rats 3 days (SE72) and 6 h (SE6) after pilocarpine injection as well as naive controls were examined. Comparison of SE72 and control groups showed, for specific areas of the hippocampal formation, lower levels of P, K, Cu, and Zn, and an increase in Ca accumulation. These results as well as further analysis of the differences between the SE72 and SE6 groups confirmed that seizure-induced excitotoxicity as well as mossy fiber sprouting are the mechanisms involved in the neurodegenerative processes which may finally lead to spontaneous seizures in the chronic period of the pilocarpine model. Moreover, in the light of the results obtained, Cu seems to play a very important role in the pathogenesis of epilepsy in this animal model. For all areas analyzed, the levels of this element recorded in the latent period were not only lower than those for controls but were even lower than the levels found in the acute period. The decreased hippocampal accumulation of Cu in the phase of behavior and EEG stabilization, a possible inhibitory effect of this element on excitatory amino acid receptors, and enhanced seizure susceptibility in Menkes disease (an inherited Cu transport disorder leading to Cu deficiency in the brain) suggest a neuroprotective role rather than neurodegenerative and proconvulsive roles of Cu in pilocarpine-induced epilepsy.


Assuntos
Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Metais/análise , Agonistas Muscarínicos/efeitos adversos , Pilocarpina/efeitos adversos , Animais , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Metais/metabolismo , Microscopia de Fluorescência , Ratos , Ratos Wistar
8.
Anal Bioanal Chem ; 404(10): 3071-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23052869

RESUMO

In the present paper, X-ray fluorescence microscopy was applied to follow the processes occurring in rat hippocampal formation during the post-seizure period. In the study, one of the status epilepticus animal models of epilepsy was used, namely the model of temporal lobe epilepsy with pilocarpine-induced seizures. In order to analyze the dynamics of seizure-induced elemental changes, the samples taken from seizure-experiencing animals 3 h and 1, 4, and 7 days after proconvulsive agent administration were analyzed. The obtained results confirmed the utility of X-ray fluorescence microscopy in the research of mechanisms involved in the pathogenesis and progress of epilepsy. The topographic and quantitative elemental analysis of hippocampal formations from different periods of epileptogenesis showed that excitotoxicity, mossy fibers sprouting, and iron-induced oxidative stress may be the processes responsible for seizure-induced neurodegenerative changes and spontaneous recurrent seizures occurring in the chronic phase of the pilocarpine model. The analysis of correlations between the recorded elemental anomalies and quantitative parameters describing animal behavior in the acute period of pilocarpine-induced status epilepticus showed that the areal densities of selected elements measured in the latent period strongly depend on the progress of the acute phase. Especially important seem to be the observations done for Ca and Zn levels which suggest that the intensity of the pathological processes such as excitotoxicity and mossy fibers sprouting depend on the total time of seizure activity. These results as well as dependencies found between the levels of S, K, and Cu and the intensity of maximal seizures clearly confirm how important it is to control the duration and intensity of seizures in clinical practice.


Assuntos
Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Animais , Modelos Animais de Doenças , Masculino , Microscopia de Fluorescência , Pilocarpina , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/patologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Raios X
9.
Environ Sci Technol Lett ; 9(2): 96-101, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35342772

RESUMO

Exposure to ozone and fine particle (PM2.5) air pollution results in premature death. These pollutants are predominantly secondary in nature and can form from nitrogen oxides (NOX), sulfur oxides (SOX), and volatile organic compounds (VOCs). Predicted health benefits for emission reduction scenarios often incompletely account for VOCs as precursors as well as the secondary organic aerosol (SOA) component of PM2.5. Here, we show that anthropogenic VOC emission reductions are more than twice as effective as equivalent fractional reductions of SOX or NOX at reducing air pollution-associated cardiorespiratory mortality in the United States. A 25% reduction in anthropogenic VOC emissions from 2016 levels is predicted to avoid 13,000 premature deaths per year, and most (85%) of the VOC-reduction benefits result from reduced SOA with the remainder from ozone. While NOX (-5.7 ± 0.2 % yr-1) and SOX (-12 ± 1 % yr-1) emissions have declined precipitously across the U.S. since 2002, anthropogenic VOC emissions (-1.8 ± 0.3 % yr-1) and concentrations of non-methane organic carbon (-2.4 ± 1.0 % yr-1) have changed less. This work indicates preferentially controlling VOCs could yield significant benefits to human health.

10.
J Biol Inorg Chem ; 16(2): 275-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21049302

RESUMO

This paper describes the results of the application of X-ray fluorescence microscopy to the qualitative, topographic and quantitative elemental analysis of nervous tissue from rats with neocortical brain injury. The tissue samples were analyzed with a 15 µm beam defined by the size of the polycapillary focus. Raster scanning of the samples generated 2D cartographies, revealing the distributions of elements such as P, S, Cl, K, Ca, Fe, Cu, and Zn. Special emphasis was placed on the analysis of the areas neighboring the lesion site and the hippocampal formation tissue. The results obtained for rats with mechanical brain injuries were compared with those recorded for controls and animals with pilocarpine-induced seizures. There were no significant differences in the elemental compositions of gray and white matter between injured and uninjured brain hemispheres. A higher level of Ca was observed in the gray matter of both of the hemispheres in brains with neocortical injuries. A similar relation was noticed for Fe in the white matter. A comparative study of hippocampal formation tissue showed a statistically significant decrease in the mass per unit area of P in the dentate gyrus (DG) and the hilus (H) of DG for animals with brain lesions in comparison with the control group. Analogous relations were found for Cu in the DG and Zn in sector 3 of Ammon's horn (CA3) and the DG. It is important to note that identical changes in the same areas were observed for animals with pilocarpine-induced seizures in our previous study.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Espectrometria por Raios X/métodos , Oligoelementos/metabolismo , Animais , Técnicas In Vitro , Masculino , Pilocarpina/toxicidade , Ratos , Convulsões/induzido quimicamente , Convulsões/metabolismo
11.
Nat Commun ; 12(1): 7215, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916495

RESUMO

Fine particle pollution, PM2.5, is associated with increased risk of death from cardiorespiratory diseases. A multidecadal shift in the United States (U.S.) PM2.5 composition towards organic aerosol as well as advances in predictive algorithms for secondary organic aerosol (SOA) allows for novel examinations of the role of PM2.5 components on mortality. Here we show SOA is strongly associated with county-level cardiorespiratory death rates in the U.S. independent of the total PM2.5 mass association with the largest associations located in the southeastern U.S. Compared to PM2.5, county-level variability in SOA across the U.S. is associated with 3.5× greater per capita county-level cardiorespiratory mortality. On a per mass basis, SOA is associated with a 6.5× higher rate of mortality than PM2.5, and biogenic and anthropogenic carbon sources both play a role in the overall SOA association with mortality. Our results suggest reducing the health impacts of PM2.5 requires consideration of SOA.


Assuntos
Aerossóis/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Cardiopatias/mortalidade , Doenças Respiratórias/mortalidade , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar , Carbono , Exposição Ambiental , Poluição Ambiental , Cardiopatias/induzido quimicamente , Humanos , Estados Unidos/epidemiologia
12.
Geosci Model Dev ; 14(6): 3407-3420, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34336142

RESUMO

Air quality modeling for research and regulatory applications often involves executing many emissions sensitivity cases to quantify impacts of hypothetical scenarios, estimate source contributions, or quantify uncertainties. Despite the prevalence of this task, conventional approaches for perturbing emissions in chemical transport models like the Community Multiscale Air Quality (CMAQ) model require extensive offline creation and finalization of alternative emissions input files. This workflow is often time-consuming, error-prone, inconsistent among model users, difficult to document, and dependent on increased hard disk resources. The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module, a component of CMAQv5.3 and beyond, addresses these limitations by performing these modifications online during the air quality simulation. Further, the model contains an Emission Control Interface which allows users to prescribe both simple and highly complex emissions scaling operations with control over individual or multiple chemical species, emissions sources, and spatial areas of interest. DESID further enhances the transparency of its operations with extensive error-checking and optional gridded output of processed emission fields. These new features are of high value to many air quality applications including routine perturbation studies, atmospheric chemistry research, and coupling with external models (e.g., energy system models, reduced-form models).

13.
Geosci Model Dev ; 14: 2867-2897, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34676058

RESUMO

The Community Multiscale Air Quality (CMAQ) model version 5.3 (CMAQ53), released to the public in August 2019 and followed by version 5.3.1 (CMAQ531) in December 2019, contains numerous science updates, enhanced functionality, and improved computation efficiency relative to the previous version of the model, 5.2.1 (CMAQ521). Major science advances in the new model include a new aerosol module (AERO7) with significant updates to secondary organic aerosol (SOA) chemistry, updated chlorine chemistry, updated detailed bromine and iodine chemistry, updated simple halogen chemistry, the addition of dimethyl sulfide (DMS) chemistry in the CB6r3 chemical mechanism, updated M3Dry bidirectional deposition model, and the new Surface Tiled Aerosol and Gaseous Exchange (STAGE) bidirectional deposition model. In addition, support for the Weather Research and Forecasting (WRF) model's hybrid vertical coordinate (HVC) was added to CMAQ53 and the Meteorology-Chemistry Interface Processor (MCIP) version 5.0 (MCIP50). Enhanced functionality in CMAQ53 includes the new Detailed Emissions Scaling, Isolation and Diagnostic (DESID) system for scaling incoming emissions to CMAQ and reading multiple gridded input emission files. Evaluation of CMAQ531 was performed by comparing monthly and seasonal mean daily 8 h average (MDA8) O3 and daily PM2.5 values from several CMAQ531 simulations to a similarly configured CMAQ521 simulation encompassing 2016. For MDA8 O3, CMAQ531 has higher O3 in the winter versus CMAQ521, due primarily to reduced dry deposition to snow, which strongly reduces wintertime O3 bias (2-4 ppbv monthly average). MDA8 O3 is lower with CMAQ531 throughout the rest of the year, particularly in spring, due in part to reduced O3 from the lateral boundary conditions (BCs), which generally increases MDA8 O3 bias in spring and fall ( 0.5 µg m-3). For daily 24 h average PM2.5, CMAQ531 has lower concentrations on average in spring and fall, higher concentrations in summer, and similar concentrations in winter to CMAQ521, which slightly increases bias in spring and fall and reduces bias in summer. Comparisons were also performed to isolate updates to several specific aspects of the modeling system, namely the lateral BCs, meteorology model version, and the deposition model used. Transitioning from a hemispheric CMAQ (HCMAQ) version 5.2.1 simulation to a HCMAQ version 5.3 simulation to provide lateral BCs contributes to higher O3 mixing ratios in the regional CMAQ simulation in higher latitudes during winter (due to the decreased O3 dry deposition to snow in CMAQ53) and lower O3 mixing ratios in middle and lower latitudes year-round (due to reduced O3 over the ocean with CMAQ53). Transitioning from WRF version 3.8 to WRF version 4.1.1 with the HVC resulted in consistently higher (1.0-1.5 ppbv) MDA8 O3 mixing ratios and higher PM2.5 concentrations (0.1-0.25 µg m-3) throughout the year. Finally, comparisons of the M3Dry and STAGE deposition models showed that MDA8 O3 is generally higher with M3Dry outside of summer, while PM2.5 is consistently higher with STAGE due to differences in the assumptions of particle deposition velocities to non-vegetated surfaces and land use with short vegetation (e.g., grasslands) between the two models. For ambient NH3, STAGE has slightly higher concentrations and smaller bias in the winter, spring, and fall, while M3Dry has higher concentrations and smaller bias but larger error and lower correlation in the summer.

14.
Rev Sci Instrum ; 92(1): 013101, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514249

RESUMO

We introduce a setup to measure high-resolution inelastic x-ray scattering at the High Energy Density scientific instrument at the European X-Ray Free-Electron Laser (XFEL). The setup uses the Si (533) reflection in a channel-cut monochromator and three spherical diced analyzer crystals in near-backscattering geometry to reach a high spectral resolution. An energy resolution of 44 meV is demonstrated for the experimental setup, close to the theoretically achievable minimum resolution. The analyzer crystals and detector are mounted on a curved-rail system, allowing quick and reliable changes in scattering angle without breaking vacuum. The entire setup is designed for operation at 10 Hz, the same repetition rate as the high-power lasers available at the instrument and the fundamental repetition rate of the European XFEL. Among other measurements, it is envisioned that this setup will allow studies of the dynamics of highly transient laser generated states of matter.

15.
Artigo em Alemão | MEDLINE | ID: mdl-20449551

RESUMO

Chemical food safety deals with the health evaluation of compounds in food with regard to toxicological aspects. In the following, examples of current interest from various categories of compounds in foods, e.g., of naturally occurring substances and of heat-induced or process-related contaminants, are presented and current problems in their toxicological evaluation are described. To guarantee that human intake of such compounds will occur in safe amounts only, an assessment of their health risks based on the present state of science and according to internationally recognized methods has to be provided. This risk assessment is independent and is performed at the national level by the Federal Institute for Risk Assessment and at the European level by the European Food Safety Authority. Results and findings of the risk assessment of toxicologically relevant compounds are the scientific basis for recommendations and strategies for consumer protection. For example, measures like the setting of maximum levels for contaminants in certain food categories can be the result. At the national level, the Federal Office for Consumer Protection and Food Safety is responsible for risk management, while at the European level the European Commission and other institutions develop the measures for the member states.


Assuntos
Defesa do Consumidor , Qualidade de Produtos para o Consumidor , Análise de Alimentos , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Administração em Saúde Pública , Gestão da Segurança/organização & administração , União Europeia , Alemanha , Humanos
16.
Sci Rep ; 10(1): 14564, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884061

RESUMO

We present a method to determine the bulk temperature of a single crystal diamond sample at an X-Ray free electron laser using inelastic X-ray scattering. The experiment was performed at the high energy density instrument at the European XFEL GmbH, Germany. The technique, based on inelastic X-ray scattering and the principle of detailed balance, was demonstrated to give accurate temperature measurements, within [Formula: see text] for both room temperature diamond and heated diamond to 500 K. Here, the temperature was increased in a controlled way using a resistive heater to test theoretical predictions of the scaling of the signal with temperature. The method was tested by validating the energy of the phonon modes with previous measurements made at room temperature using inelastic X-ray scattering and neutron scattering techniques. This technique could be used to determine the bulk temperature in transient systems with a temporal resolution of 50 fs and for which accurate measurements of thermodynamic properties are vital to build accurate equation of state and transport models.

17.
Sci Total Environ ; 651(Pt 1): 456-465, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243165

RESUMO

Deposition and accumulation of aerosol particles on photovoltaics (PV) panels, which is commonly referred to as "soiling of PV panels," impacts the performance of the PV energy system. It is desirable to estimate the soiling effect at different locations and times for modeling the PV system performance and devising cost-effective mitigation. This study presents an approach to estimate the soiling effect by utilizing particulate matter (PM) dry deposition estimates from air quality model simulations. The Community Multiscale Air Quality (CMAQ) modeling system used in this study was developed by the U.S. Environmental Protection Agency (U.S. EPA) for air quality assessments, rule-making, and research. Three deposition estimates based on different surface roughness length parameters assumed in CMAQ were used to illustrate the soling effect in different land-use types. The results were analyzed for three locations in the U.S. for year 2011. One urban and one suburban location in Colorado were selected because there have been field measurements of particle deposition on solar panels and analysis on the consequent soiling effect performed at these locations. The third location is a coastal city in Texas, the City of Brownsville. These three locations have distinct ambient environments. CMAQ underestimates particle deposition by 40% to 80% when compared to the field measurements at the two sites in Colorado due to the underestimations in both the ambient PM10 concentration and deposition velocity. The estimated panel transmittance sensitivity due to the deposited particles is higher than the sensitivity obtained from the measurements in Colorado. The final soiling effect, which is transmittance loss, is estimated as 3.17 ±â€¯4.20% for the Texas site, 0.45 ±â€¯0.33%, and 0.31 ±â€¯0.25% for the Colorado sites. Although the numbers are lower compared to the measurements in Colorado, the results are comparable with the soiling effects observed in U.S.

18.
Arch Toxicol ; 82(12): 923-31, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18987846

RESUMO

Recent studies have presented evidence that in vivo obtained gene expression data can be used for carcinogen classification, for instance to differentiate between genotoxic and non-genotoxic carcinogens. However, although primary rat hepatocytes represent a well-established in vitro system for drug metabolism and enzyme induction, they have not yet been systematically optimized for toxicogenomic studies. The latter may be confounded by the fact that cultured hepatocytes show strong spontaneous alterations in gene expression patterns. Therefore, we addressed the following questions: (1) which culture system is optimal, comparing sandwich, Matrigel and 2D cultures, (2) how critical is the impact of culture period on substance-induced alterations in gene expression and (3) do these substance-induced alterations in cultured hepatocytes occur already at in vivo relevant concentrations? For this purpose we analyzed the expression of four genes, namely Abat, Gsk3beta, Myd116 and Sult1a1 that recently have been reported to be influenced by the antihistamine and non-genotoxic carcinogen methapyrilene (MPy). The most reproducible effects of MPy were observed in sandwich cultures. Induction factors of Gsk3beta and Myd116 at 100 microM MPy were 2 and 4 (medians), respectively, whereas expression of Abat and Sult1a1 were inhibited by factors of 7 and 5, respectively. Similar results were observed in hepatocytes maintained for 24 h or 3 weeks in sandwich culture with respect to the influence of MPy on the expression of Abat, Gsk3beta, Myd116 and Sult1a1. To determine whether MPy influences gene expression at in vivo relevant concentrations, 3.5 mg/kg MPy were administered to male Wistar rats intraperitoneally, resulting in plasma concentrations ranging between 1.72 and 0.32 microM 5 and 80 min after injection. Inhibition of Abat and Sult1a1 expression in vitro already occurred at in vivo relevant concentrations of 0.39 microM MPy. Induction of Myd116 was observed at 6.25 microM which is higher but in the same order of magnitude as in vivo relevant concentrations. In conclusion, the presented data strongly suggest that sandwich cultures are most adequate for detection of MPy-induced gene expression alterations and the effect of MPy was detected at in vivo relevant concentrations.


Assuntos
Técnicas de Cultura de Células/métodos , Colágeno/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Laminina/efeitos dos fármacos , Metapirileno/toxicidade , Proteoglicanas/efeitos dos fármacos , Animais , Antígenos de Diferenciação/metabolismo , Arilsulfotransferase/metabolismo , Carcinógenos/toxicidade , Células Cultivadas , Meios de Cultura Livres de Soro , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/enzimologia , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Masculino , Metapirileno/sangue , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Wistar , Proteínas Repressoras/metabolismo , Fatores de Tempo , Toxicogenética
19.
Exp Toxicol Pathol ; 60(4-5): 313-21, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18513932

RESUMO

Triphenyltin is an organotin compound that has been used extensively as an antifouling biocide and as an agricultural pesticide. Certain organotin compounds act as endocrine-active agents and have been reported to affect reproduction in mollusks and mammals. Here we studied the histopathological effects of 2 or 6mg triphenyltin chloride (TPTCl)/kg b.w. on the reproductive tissue and the thymus of female pubertal rats as part of a comprehensive pubertal assay. Beginning at postnatal day (PND) 23 female Wistar rats were treated daily per gavage until their first estrus after PND 53. Reproductive organs were removed and histologically evaluated. While no histological changes were observed in oviduct, uterus, vagina and mamma, an increase in the number of all follicle stages occurred at both dose levels. Furthermore, exposure to 2mg TPTCl/kg b.w. led to a significant reduction in the diameter of tertiary follicles. A significant increase in the number of atretic follicles was observed in tertiary and preovulatory follicles after exposure to 6mg TPTCl. The thymus displayed a decreased number of apoptotic cells in both dose groups. We conclude that peripubertal administration of 2 and 6mg TPTCl/kg b.w. caused effects on ovarian follicles of female rats.


Assuntos
Anti-Infecciosos/toxicidade , Compostos Orgânicos de Estanho/toxicidade , Ovário/efeitos dos fármacos , Ovário/patologia , Animais , Feminino , Imuno-Histoquímica , Ratos , Ratos Wistar , Timo/efeitos dos fármacos , Timo/patologia
20.
Atmos Chem Phys ; 18(17): 12891-12913, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30288162

RESUMO

Advances in satellite retrieval of aerosol type can improve the accuracy of near-surface air quality characterization by providing broad regional context and decreasing metric uncertainties and errors. The frequent, spatially extensive and radiometrically consistent instantaneous constraints can be especially useful in areas away from ground monitors and progressively downwind of emission sources. We present a physical approach to constraining regional-scale estimates of PM2.5, its major chemical component species estimates, and related uncertainty estimates of chemical transport model (CTM; e.g., the Community Multi-scale Air Quality Model) outputs. This approach uses ground-based monitors where available, combined with aerosol optical depth and qualitative constraints on aerosol size, shape, and light-absorption properties from the Multi-angle Imaging SpectroRadiometer (MISR) on the NASA Earth Observing System's Terra satellite. The CTM complements these data by providing complete spatial and temporal coverage. Unlike widely used approaches that train statistical regression models, the technique developed here leverages CTM physical constraints such as the conservation of aerosol mass and meteorological consistency, independent of observations. The CTM also aids in identifying relationships between observed species concentrations and emission sources. Aerosol air mass types over populated regions of central California are characterized using satellite data acquired during the 2013 San Joaquin field deployment of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) project. We investigate the optimal application of incorporating 275 m horizontal-resolution aerosol air-mass-type maps and total-column aerosol optical depth from the MISR Research Aerosol retrieval algorithm (RA) into regional-scale CTM output. The impact on surface PM2.5 fields progressively downwind of large single sources is evaluated using contemporaneous surface observations. Spatiotemporal R 2 and RMSE values for the model, constrained by both satellite and surface monitor measurements based on 10-fold cross-validation, are 0.79 and 0.33 for PM2.5, 0.88 and 0.65 for NO3 -, 0.78 and 0.23 for SO4 2-, and 1.01 for NH+, 0.73 and 0.23 for OC, and 0.31 and 0.65 for EC, respectively. Regional cross-validation temporal and spatiotemporal R2 results for the satellite-based PM2.5 improve by 30 % and 13 %, respectively, in comparison to unconstrained CTM simulations and provide finer spatial resolution. SO4 2- cross-validation values showed the largest spatial and spatiotemporal R2 improvement, with a 43 % increase. Assessing this physical technique in a well- instrumented region opens the possibility of applying it globally, especially over areas where surface air quality measurements are scarce or entirely absent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa