Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(14): e2210745120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989307

RESUMO

Cells respond to stress by synthesizing chaperone proteins that seek to correct protein misfolding and maintain function. However, abrogation of protein homeostasis is a hallmark of aging, leading to loss of function and the formation of proteotoxic aggregates characteristic of pathology. Consequently, discovering the underlying molecular causes of this deterioration in proteostasis is key to designing effective interventions to disease or to maintaining cell health in regenerative medicine strategies. Here, we examined primary human mesenchymal stem cells, cultured to a point of replicative senescence and subjected to heat shock, as an in vitro model of the aging stress response. Multi -omics analysis showed how homeostasis components were reduced in senescent cells, caused by dysregulation of a functional network of chaperones, thereby limiting proteostatic competence. Time-resolved analysis of the primary response factors, including those regulating heat shock protein 70 kDa (HSPA1A), revealed that regulatory control is essentially translational. Senescent cells have a reduced capacity for chaperone protein translation and misfolded protein (MFP) turnover, driven by downregulation of ribosomal proteins and loss of the E3 ubiquitin ligase CHIP (C-terminus of HSP70 interacting protein) which marks MFPs for degradation. This limits the cell's stress response and subsequent recovery. A kinetic model recapitulated these reduced capacities and predicted an accumulation of MFP, a hypothesis supported by evidence of systematic changes to the proteomic fold state. These results thus establish a specific loss of regulatory capacity at the protein, rather than transcript, level and uncover underlying systematic links between aging and loss of protein homeostasis.


Assuntos
Células-Tronco Mesenquimais , Proteômica , Humanos , Envelhecimento , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Biossíntese de Proteínas , Células-Tronco Mesenquimais/metabolismo
2.
Mov Disord ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38798037

RESUMO

BACKGROUND: Recent studies identified increased cerebrospinal fluid (CSF) DOPA decarboxylase (DDC) as a promising biomarker for parkinsonian disorders, suggesting a compensation to dying dopaminergic neurons. A correlation with 123I-FP-CIT-SPECT (DaT-SPECT) imaging could shed light on this link. OBJECTIVE: The objective is to assess the relationship between CSF DDC levels and DaT-SPECT binding values. METHODS: A total of 51 and 72 Parkinson's disease (PD) subjects with available DaT-SPECT and CSF DDC levels were selected from the PPMI and Biopark cohorts, respectively. DDC levels were analyzed using proximity extension assay and correlated with DaT-SPECT striatal binding ratios (SBR). All analyses were corrected for age and sex. RESULTS: CSF DDC levels in PD patients correlated negatively with DaT-SPECT SBR in both putamen and caudate nucleus. Additionally, SBR decreased with increased DDC levels over time in PD patients. CONCLUSION: CSF DDC levels negatively correlate with DaT-SPECT SBR in levodopa-treated PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
Biomater Adv ; 160: 213847, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657288

RESUMO

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Colágeno , Combinação de Medicamentos , Células Epiteliais , Hidrogéis , Laminina , Peptídeos , Proteoglicanas , Laminina/farmacologia , Laminina/química , Hidrogéis/química , Hidrogéis/farmacologia , Proteoglicanas/farmacologia , Proteoglicanas/química , Colágeno/química , Colágeno/farmacologia , Peptídeos/farmacologia , Peptídeos/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/citologia , Humanos , Feminino , Técnicas de Cultura de Células em Três Dimensões/métodos , Sobrevivência Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Glândulas Mamárias Humanas/citologia , Organoides/efeitos dos fármacos , Organoides/citologia , Técnicas de Cultura de Células/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa