Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Carbohydr Polym ; 333: 121978, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494231

RESUMO

Mushroom polysaccharides are recognized as "biological response modifiers". Besides several bioactivities, a growing interest in their prebiotic potential has been raised due to the gut microbiota modulation potential. This review comprehensively summarizes mushroom polysaccharides' biological properties, structure-function relationship, and underlying mechanisms. It provides a recent overview of the key findings in the field (2018-2024). Key findings and limitations on structure-function correlation are discussed. Although most studies focus on ß-glucans or extracts, α-glucans and chitin have gained interest. Prebiotic capacity has been associated with α-glucans and chitin, while antimicrobial and wound healing potential is attributed to chitin. However, further research is of utmost importance. Human fecal fermentation is the most reported approach to assess prebiotic potential, indicating impacts on intestinal biological, mechanical, chemical and immunological barriers. Gut microbiota dysbiosis has been directly connected with intestinal, cardiovascular, metabolic, and neurological diseases. Concerning gut microbiota modulation, animal experiments have suggested proinflammatory cytokines reduction and redox balance re-establishment. Most literature focused on the anticancer and immunomodulatory potential. However, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemic, antilipidemic, antioxidant, and neuroprotective properties are discussed. A significant overview of the gaps and research directions in synergistic effects, underlying mechanisms, structure-function correlation, clinical trials and scientific data is also given.


Assuntos
Agaricales , Anti-Infecciosos , Microbioma Gastrointestinal , Animais , Humanos , Prebióticos , Polissacarídeos/farmacologia , Polissacarídeos/química , Quitina/farmacologia , Glucanos/farmacologia , Anti-Infecciosos/farmacologia
2.
Foods ; 13(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540925

RESUMO

Fish byproducts are valuable sources of Ω-3 polyunsaturated fatty acids (PUFAs). Their valorization potentially alleviates pressure on this sector. This study uses a circular economy approach to investigate the oil fraction from sardine cooking wastewater (SCW). Analysis of its fatty acid (FA) profile revealed promising PUFA levels. However, PUFAs are highly susceptible to oxidation, prompting the exploration of effective and natural strategies to replace synthetic antioxidants and mitigate their associated risks and concerns. An antioxidant extract from acorn shells was developed and evaluated for its efficacy in preventing oxidative degradation. The extract exhibited significant levels of total phenolic compounds (TPC: 49.94 and 22.99 mg TAE or GAE/g DW) and antioxidant activities (ABTS: 72.46; ORAC: 59.60; DPPH: 248.24 mg TE/g DW), with tannins comprising a significant portion of phenolics (20.61 mg TAE/g DW). LC-ESI-UHR-QqTOF-MS identified ellagic acid, epicatechin, procyanidin B2 and azelaic acid as the predominant phenolic compounds. The extract demonstrated the ability to significantly reduce the peroxide index and inhibit PUFA oxidation, including linoleic acid (LA), eicosapentaenoic (EPA), and docosahexaenoic acid (DHA). This approach holds promise for developing stable, functional ingredients rich in PUFAs. Future research will focus on refining oil extraction procedures and conducting stability tests towards the development of specific applications.

3.
Food Chem ; 442: 138368, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219565

RESUMO

Mango peels are widely produced and highly perishable. Disinfectant washing and freezing are among the most used methods to preserve foods. However, their impact on products' properties is conditioned by the foods' features. This study evaluated for the first time the phytochemical composition, antioxidant activity, and microstructure of mango peels washed with peracetic acid (27 mg/mL for 19 min) and frozen at -20 °C for 30 days. Washing decreased the content of vitamin C (-7%), penta-O-galloyl-ß-d-glucose (-23 %), catechin (-30 %), and lutein (-24 %), but the antioxidant activity was preserved. Freezing changed mango peels' microstructure, increased free phenolic compounds, namely acid gallic (+36 %) and catechin (+51 %), but reduced bound phenolic compounds (-12 % to -87 %), bound phenolic compounds' antioxidant activity (-51 % to -72 %), and violaxanthin (-51 %). Both methods were considered adequate to conserve mango peels since fiber and the main bioactive compounds (free mangiferin, free gallic acid, and ß-carotene) remained unchanged or increased.


Assuntos
Catequina , Glucose , Mangifera , Antioxidantes/química , Mangifera/química , Catequina/análise , Congelamento , Frutas/química
4.
Food Funct ; 15(11): 6095-6117, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38757812

RESUMO

The influence of gut microbiota in the onset and development of several metabolic diseases has gained attention over the last few years. Diet plays an essential role in gut microbiota modulation. Western diet (WD), characterized by high-sugar and high-fat consumption, alters gut microbiome composition, diversity index, microbial relative levels, and functional pathways. Despite the promising health effects demonstrated by polyunsaturated fatty acids, their impact on gut microbiota is still overlooked. The effect of Fish oil (omega-3 source) and Pomegranate oil (punicic acid source), and a mixture of both oils in gut microbiota modulation were determined by subjecting the oil samples to in vitro fecal fermentations. Cecal samples from rats from two different dietary groups: a control diet (CD) and a high-fat high-sugar diet (WD), were used as fecal inoculum. 16S amplicon metagenomics sequencing showed that Fish oil + Pomegranate oil from the WD group increased α-diversity. This sample can also increase the relative abundance of the Firmicutes and Bacteroidetes phylum as well as Akkermansia and Blautia, which were affected by the WD consumption. All samples were able to increase butyrate and acetate concentration in the WD group. Moreover, tyrosine concentrations, a precursor for dopamine and norepinephrine, increase in the Fish oil + Pomegranate oil WD sample. GABA, an important neurotransmitter, was also increased in WD samples. These results suggest a potential positive impact of these oils' mixture on gut-brain axis modulation. It was demonstrated, for the first time, the great potential of using a mixture of both Fish and Pomegranate oil to restore the gut microbiota changes associated with WD consumption.


Assuntos
Bactérias , Dieta Ocidental , Ácidos Graxos Ômega-3 , Fezes , Fermentação , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Fezes/microbiologia , Ratos , Masculino , Dieta Ocidental/efeitos adversos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Linolênicos/farmacologia , Ratos Wistar , Óleos de Peixe/farmacologia , Punica granatum/química , Óleos de Plantas/farmacologia , Ceco/microbiologia , Ceco/metabolismo
5.
Curr Pharm Des ; 29(11): 804-823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36567303

RESUMO

Edible mushrooms have been classified as "next-generation food" due to their high nutritional value coupled with their biological and functional potential. The most extensively studied and reported mushroom macromolecules are polysaccharides. However, macrofungi proteins and peptides are also a representative and significant bioactive group. Several factors such as species, substrate composition and harvest time significantly impact the mushroom protein content, typically ranging between 19 and 35% on a dry weight basis. Proteins work based on their shape and structure. Numerous extraction methods, including chemical and non-conventional, and their implications on protein yield and stability will be discussed. Beyond their biological potential, a great advantage of mushroom proteins is their uniqueness, as they often differ from animal, vegetable, and microbial proteins. According to recently published reports, the most relevant mushroom bioactive proteins and peptides include lectins, fungal immunomodulatory proteins, ubiquitin-like proteins, and proteins possessing enzymatic activity such as ribonucleases laccases, and other enzymes and ergothioneine. These are reported as antioxidant, antiviral, antifungal, antibacterial, antihypertensive, immunomodulatory, antitumour, antihypercholesterolemic or antihyperlipidemic, antidiabetic and anti-inflammatory properties, which improved proteins and peptides research interest and contributed to the increase of mushroom market value. This review provides an overview of the most relevant biochemical and biological properties of the main protein groups in edible mushrooms, explicitly focusing on their biomedical potential. Although mushrooms are a rich source of various proteins, many of these molecules have yet to be identified and characterised. Accordingly, it is crucial to identify and characterise new macromolecules of macrofungi origin, which opens an opportunity for further investigation to identify new bioactives for food, nutraceutical, or medicinal applications.


Assuntos
Agaricales , Animais , Agaricales/química , Antioxidantes , Lectinas , Suplementos Nutricionais , Verduras
6.
Foods ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36832776

RESUMO

Serpa is a protected designation of origin (PDO) cheese produced with raw ewes' milk and coagulated with Cynara cardunculus. Legislation does not allow for milk pasteurization and starter culture inoculation. Although natural Serpa's rich microbiota allows for the development of a unique organoleptic profile, it also suggests high heterogeneity. This raises issues in the final sensory and safety properties, leading to several losses in the sector. A possible solution to overcoming these issues is the development of an autochthonous starter culture. In the present work, some Serpa cheese Lactic acid bacteria (LAB)-isolated microorganisms, previously selected based on their safety, technological and protective performance, were tested in laboratory-scale cheeses. Their acidification, proteolysis (protein and peptide profile, nitrogen fractions, free amino acids (FAA)), and volatiles generation (volatile fatty acids (VFA) and esters) potential was investigated. Significant differences were found in all parameters analyzed, showing a considerable strain effect. Successive statistical analyses were performed to compare cheese models and Serpa PDO cheese. The strains L. plantarum PL1 and PL2 and the PL1 and L. paracasei PC mix were selected as the most promising, resulting in a closer lipolytic and proteolytic profile of Serpa PDO cheese. In future work, these inocula will be produced at a pilot scale and tested at the cheese level to validate their application.

7.
Foods ; 11(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35804714

RESUMO

Serpa is a protected designation of origin cheese produced with a vegetable coagulant (Cynara cardunculus L.) and raw ovine milk. Despite the unique sensory profile of raw milk cheeses, numerous parameters influence their sensory properties and safety. To protect the Serpa cheese quality and contribute to unifying their distinctive features, some rheologic and physicochemical parameters of cheeses from four PDO producers, in distinct seasons and with different sensory scores, were monitored. The results suggested a high chemical diversity and variation according to the dairy, month and season, which corroborates the significant heterogeneity. However, a higher incidence of some compounds was found: a group of free amino acids (Glu, Ala, Leu, Val and Phe), lactic and acetic acids, some volatile fatty acids (e.g., iC4, iC5, C6 and C12) and esters (e.g., ethyl butanoate, decanoate and dodecanoate). Through the successive statistical analysis, 13 variables were selected as chemical markers of Serpa cheese specificity: C3, C4, iC5, C12, Tyr, Trp, Ile, 2-undecanone, ethyl isovalerate, moisture content on a fat-free basis, the nitrogen-fractions (maturation index and non-protein and total nitrogen ratio) and G' 1 Hz. These sensory markers' identification will be essential to guide the selection and development of an autochthonous starter culture to improve cheese quality and safety issues and maintain some of the Serpa authenticity.

8.
Food Res Int ; 158: 111549, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840243

RESUMO

This work proposes an innovative approach to valorise swine blood based on enzymatic hydrolysis and membrane fractionations. Hydrolysis with Cynara cardunculus enzymes, followed by microfiltration and double nanofiltration generated three high protein fractions, retentate of microfiltration (RMF; >0.5 µm) and retentate of nanofiltration (RNF; >3 kDa) with approximately 90% of protein on a dry basis and filtrate of nanofiltrate (FNF; <3 kDa) with 65%. FNF, rich in low molecular weight peptides, showed excellent antioxidants (ABTS and ORAC of 911.81 and 532.82 µmol TE g-1 DB, respectively) and antihypertensive (IC50 of 28.51 µg mL-1) potential. By peptidomics and in silico analysis, 43 unique sequences of interest were found, among which LVV-Hemorphin-7 was identified. This hemorphin was demonstrated as the main responsible for the observed bioactivity. Complementary results showed a prebiotic effect mainly for the growth of Bifidobacterium animalis Bo, as well as interesting free amino acids (mainly glutamic acid, leucine, alanine, phenylalanine and aspartic acid) and mineral (e.g., Ca, Mg, P, K and Na) profiles. No antibacterial effect was verified for the seven pathogenic bacteria tested. This study allowed obtaining new ingredient of high nutritional and nutraceutical value for human consumption, with a perspective of sustainability and industrial viability.


Assuntos
Cynara , Animais , Antioxidantes/química , Suplementos Nutricionais , Humanos , Peptídeos/química , Hidrolisados de Proteína/química , Suínos
9.
Foods ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34681349

RESUMO

The high nutritional value of vegetables is well recognized, but their short shelf life and seasonal nature result in massive losses and wastes. Vegetable's byproducts are an opportunity to develop value-added ingredients, increasing food system efficiency and environmental sustainability. In the present work, pulps and powders of byproducts from rocket and spinach leaves and watercress were developed and stored for six months under freezing and vacuum conditions, respectively. After processing and storage, microbiological quality, bioactive compounds (polyphenols, carotenoids and tocopherols profiles), antioxidant capacity, and pulps viscosity were analyzed. Generally, the developed vegetable's pulps and powders were considered microbiologically safe. Although some variations after processing and storage were verified, the antioxidant activity was preserved or improved. A rich phenolic composition was also registered and maintained. During freezing, the quantitative carotenoid profile was significantly improved (mainly in rocket and spinach), while after drying, there was a significant decrease. A positive effect was verified in the vitamin E level. Both processing and storage conditions resulted in products with relevant phenolics, carotenoids and tocopherol levels, contributing to the antioxidant activity registered. Thus, this study demonstrates the potential of vegetable byproducts valorization through developing these functional ingredients bringing economic and environmental value into the food chain.

10.
Sci Rep ; 9(1): 13679, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548611

RESUMO

The composition of mammalian microbiota has been related with the host health status. In this study, we assessed the oral microbiome of 3 cetacean species most commonly found stranded in Iberian Atlantic waters (Delphinus delphis, Stenella coeruleoalba and Phocoena phocoena), using 16S rDNA-amplicon metabarcoding. All oral microbiomes were dominated by Proteobacteria, Firmicutes, Bacteroidetes and Fusobacteria bacteria, which were also predominant in the oral cavity of Tursiops truncatus. A Constrained Canonical Analysis (CCA) showed that the major factors shaping the composition of 38 oral microbiomes (p-value < 0.05) were: (i) animal species and (ii) age class, segregating adults and juveniles. The correlation analysis also grouped the microbiomes by animal stranding location and health status. Similar discriminatory patterns were detected using the data from a previous study on Tursiops truncatus, indicating that this correlation approach may facilitate data comparisons between different studies on several cetacean species. This study identified a total of 15 bacterial genera and 27 OTUs discriminating between the observed CCA groups, which can be further explored as microbiota fingerprints to develop (i) specific diagnostic assays for cetacean population conservation and (ii) bio-monitoring approaches to assess the health of marine ecosystems from the Iberian Atlantic basin, using cetaceans as bioindicators.


Assuntos
Monitoramento Biológico/métodos , Cetáceos/microbiologia , Microbiota/fisiologia , Boca/microbiologia , Animais , Código de Barras de DNA Taxonômico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa