Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 250(0): 202-219, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37961853

RESUMO

The exponential effort in the design of hole-transporting materials (HTMs) during the last decade has been motivated by their key role as p-type semiconductors for (opto)electronics. Although structure-property relationships have been successfully rationalized to decipher optimal site substitutions, aliphatic chain lengths or efficient aromatic cores for enhanced charge conduction, the impact of molecular shape, material morphology and dynamic disorder has been generally overlooked. In this work, we characterize by means of a multi-level theoretical approach the charge transport properties of a novel planar small-molecule HTM based on the indoloindole aromatic core (IDIDF), and compare it with spherical spiro-OMeTAD. Hybrid DFT calculations predict moderate band dispersions in IDIDF associated to the main transport direction characterized by π-π stacked molecules, both between the indoloindole cores and the thiophene groups. Strongly coupled dimers show relevant non-covalent interactions (NCI), indicating that NCI surfaces are a necessary but not exclusive requirement for large electronic couplings. We evidence remarkable differences in the site energy standard deviation and electronic coupling distributions between the conduction paths of IDIDF and spiro-OMeTAD. Despite the spherical vs. planar shape, theoretical calculations predict in the static crystal strong direction-dependent charge transport in the two HTMs, with ca. one-order-of-magnitude higher mobility (µ) for IDIDF. The dynamical disorder promoted by finite temperature effects in the crystal leads to a reduction in the hole transport properties in both HTMs, with maximum µ values of 2.42 and 4.2 × 10-2 cm2 V-1 s-1 for IDIDF and spiro-OMeTAD, respectively, as well as a significant increase in the transport anisotropy in the latter. Finally, the impact of the material amorphousness in the hole mobility is analysed by modelling a fully random distribution of HTM molecules. An average (lower-bound) mobility of 1.1 × 10-3 and 4.9 × 10-5 cm2 V-1 s-1 is predicted for planar IDIDF and spherical spiro-OMeTAD, respectively, in good accord with the experimental data registered in thin-film devices. Our results demonstrate the strong influence of molecular shape, dynamic structural fluctuations and crystal morphology on the charge transport, and pose indoloindole-based HTMs as promising materials for organic electronics and photovoltaics.

2.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38953447

RESUMO

Herein, we explore, from a theoretical perspective, the nonradiative photoinduced processes (charge separation and energy transfer) within a family of donor-acceptor supramolecular complexes based on the electron-donor truxene-tetrathiafulvalene (truxTTF) derivative and a series of curved fullerene fragments (buckybowls) of different shapes and sizes (C30H12, C32H12, and C38H14) as electron acceptors that successfully combine with truxTTF via non-covalent interactions. The resulting supramolecular complexes (truxTTF·C30H12, truxTTF·C32H12, and truxTTF·C38H14) undergo charge-separation processes upon photoexcitation through charge-transfer states involving the donor and acceptor units. Despite the not so different size of the buckybowls, they present noticeable differences in the charge-separation efficiency owing to a complex decay post-photoexcitation mechanism involving several low-lying excited states of different natures (local and charge-transfer excitations), all closely spaced in energy. In this intricate scenario, we have adopted a theoretical approach combining electronic structure calculations at (time-dependent) density functional theory, a multistate multifragment diabatization method, the Marcus-Levitch-Jortner semiclassical rate expression, and a kinetic model to estimate the charge separation rate constants of the supramolecular heterodimers. Our outcomes highlight that the efficiency of the photoinduced charge-separation process increases with the extension of the buckybowl backbone. The supramolecular heterodimer with the largest buckybowl (truxTTF·C38H14) displays multiple and efficient electron-transfer pathways, providing a global photoinduced charge separation in the ultrafast time scale in line with the experimental findings. The study reported indicates that modifications in the shape and size of buckybowl systems can give rise to attractive novel acceptors for potential photovoltaic applications.

3.
Angew Chem Int Ed Engl ; : e202404014, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934233

RESUMO

We show an unexpected aggregation phenomenon of a long oligoyne (Py[16]) with 16 contiguous triple bonds and endcapped with bulky 3,5-bi(3,5-bis-tert-butylphenyl)pyridine groups. Aggregation of 1D p-conjugated oligoyne chains is rare, given the minimal p-p intermolecular interactions of the weakly polarizable polyyne chain, as well as its flexibility that works against self assembly. In dilute solutions, the reversible aggregation of Py[16] initiates at low temperature in the range of 140-180 K, and is not observed for shorter oligoynes in this series. Cryogenic UV-Vis electronic absorption spectra and vibrational Raman spectra with different laser wavelength lines tuning from in-resonance to off-resonance conditions have been used to extract the vibrational features characterizing the Monomer and aggregate species. Theoretical calculations complement the spectroscopic findings.

4.
J Am Chem Soc ; 145(35): 19243-19255, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37585687

RESUMO

Polyethylene terephthalate (PET) is the most abundant polyester plastic, widely used in textiles and packaging, but, unfortunately, it is also one of the most discarded plastics after one use. In the last years, the enzymatic biodegradation of PET has sparked great interest owing to the discovery and subsequent mutation of PETase-like enzymes, able to depolymerize PET. FAST-PETase is one of the best enzymes hitherto proposed to efficiently degrade PET, although the origin of its efficiency is not completely clear. To understand the molecular origin of its enhanced catalytic activity, we have carried out a thorough computational study of PET degradation by the FAST-PETase action by employing classical and hybrid (QM/MM) molecular dynamics (MD) simulations. Our findings show that the rate-limiting reaction step for FAST-PETase corresponds to the acylation stage with an estimated free energy barrier of 12.1 kcal mol-1, which is significantly smaller than that calculated for PETase (16.5 kcal mol-1) and, therefore, supports the enhanced catalytic activity of FAST-PETase. The origin of this enhancement is mainly attributed to the N233K mutation, which, although sited relatively far from the active site, induces a chain folding where the Asp206 of the catalytic triad is located, impeding that this residue sets effective H-bonds with its neighboring residues. This effect makes Asp206 hold a more basic character compared to the wild-type PETase and boosts the interaction with the protonated His237 of the catalytic triad in the transition state of acylation, with the consequent decrease of the catalytic barrier and acceleration of the PET degradation reaction.

5.
Angew Chem Int Ed Engl ; 61(47): e202213345, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36178740

RESUMO

Hydrogen-bonded squaramide (SQ) supramolecular polymers exhibit uncommon thermoreversible polymorph transitions between particle- and fiber-like nanostructures. SQs 1-3, with different steric bulk, self-assemble in solution into particles (AggI) upon cooling to 298 K, and SQs 1 and 2, with only one dendronic group, show a reversible transformation into fibers (AggII) by further decreasing the temperature to 288 K. Nano-DSC and UV/Vis studies on SQ 1 reveal a concentration-dependent transition temperature and ΔH for the AggI-to-AggII conversion, while the kinetic studies on SQ 2 indicate the on-pathway nature of the polymorph transition. Spectroscopic and theoretical studies reveal that these transitions are triggered by the molecular reorganization of the SQ units changing from slipped to head-to-tail hydrogen bonding patterns. This work unveils the thermodynamic and kinetic aspects of reversible polymorph transitions that are of interest to develop stimuli-responsive systems.


Assuntos
Hidrogênio , Polímeros , Ligação de Hidrogênio , Polímeros/química , Cinética
6.
J Am Chem Soc ; 143(29): 11199-11208, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34260220

RESUMO

Functional materials composed of spontaneously self-assembled electron donor and acceptor entities capable of generating long-lived charge-separated states upon photoillumination are in great demand as they are key in building the next generation of light energy harvesting devices. However, creating such well-defined architectures is challenging due to the intricate molecular design, multistep synthesis, and issues associated in demonstrating long-lived electron transfer. In this study, we have accomplished these tasks and report the synthesis of a new fullerene-bis-Zn-porphyrin e-bisadduct by tether-directed functionalization of C60 via a multistep synthetic protocol. Supramolecular oligomers were subsequently formed involving the two porphyrin-bearing arms embracing a fullerene cage of the vicinal molecule as confirmed by MALDI-TOF spectrometry and variable temperature NMR. In addition, the initially formed worm-like oligomers are shown to evolve to generate donut-like aggregates by AFM monitoring that was also supported by theoretical calculations. The final supramolecular donuts revealed an inner cavity size estimated as 23 nm, close to that observed in photosynthetic antenna systems. Upon systematic spectral, computational, and electrochemical studies, an energy level diagram was established to visualize the thermodynamic feasibility of electron transfer in these donor-acceptor constructs. Subsequently, transient pump-probe spectral studies covering the wide femtosecond-to-millisecond time scale were performed to confirm the formation of long-lived charge-separated states. The lifetime of the final charge-separated state was about 40 µs, thus highlighting the significance of the current approach of building giant self-organized donor-acceptor assemblies for light energy harvesting applications.

7.
J Am Chem Soc ; 143(33): 13281-13291, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378925

RESUMO

The synthesis of two series of N-annulated perylene bisimides (PBIs), compounds 1 and 2, is reported, and their self-assembling features are thoroughly investigated by a complete set of spectroscopic measurements and theoretical calculations. The study corroborates the enormous influence that the distance between the PBI core and the peripheral groups exerts on the chiroptical properties and the supramolecular polymerization mechanism. Compounds 1, with the peripheral groups separated from the central PBI core by two methylenes and an ester group, form J-type supramolecular polymers in a cooperative manner but exhibit negligible chiroptical properties. The lack of clear helicity, due to the staircase arrangement of the self-assembling units in the aggregate, justifies these features. In contrast, attaching the peripheral groups directly to the N-annulated PBI core drastically changes the self-assembling properties of compounds 2, which form H-type aggregates following an isodesmic mechanism. These H-type aggregates show a strong aggregation-caused quenching (ACQ) effect that leads to nonemissive aggregates. Chiral (S)-2 and (R)-2 experience an efficient transfer of asymmetry to afford P- and M-type aggregates, respectively, although no amplification of asymmetry is achieved in majority rules or "sergeants-and-soldiers" experiments. A solvent-controlled stereomutation is observed for chiral (S)-2 and (R)-2, which form helical supramolecular polymers of different handedness depending on the solvent (methylcyclohexane or toluene). The stereomutation is accounted for by considering the two possible conformations of the terminal phenyl groups, eclipsed or staggered, which lead to linear or helical self-assemblies, respectively, with different relative stabilities depending on the solvent.

8.
Small ; 17(7): e2006133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448095

RESUMO

The rising interest on pathway complexity in supramolecular polymerization has prompted the finding of novel monomer designs able to stabilize kinetically trapped species and generate supramolecular polymorphs. In the present work, the exploitation of the Z/E (geometrical) isomerism of squaramide (SQ) units to produce various self-assembled isoforms and complex supramolecular polymerization pathways in methylcyclohexane/CHCl3 mixtures is reported for the first time. This is achieved by using a new bissquaramidic macrocycle (MSq) that self-assembles into two markedly different thermodynamic aggregates, AggA (discrete cyclic structures) and AggB (fibrillar structures), depending on the solvent composition and concentration. Remarkably, UV-vis, 1 H NMR, and FT-IR experiments together with quantum-chemical calculations indicate that these two distinct aggregates are formed via two different hydrogen bonding patterns (side-to-side in AggA and head-to-tail in AggB) due to different conformations in the SQ units (Z,E in AggA and Z,Z in AggB). The ability of MSq to supramolecularly polymerize into two distinct aggregates is utilized to induce the kinetic-to-thermodynamic transformation from AggA to AggB, which occurs via an on-pathway mechanism. It is believed that this system provides new insights for the design of potential supramolecular polymorphic materials by using squaramide units.


Assuntos
Isomerismo , Ligação de Hidrogênio , Polimerização , Quinina/análogos & derivados , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Chemistry ; 27(52): 13242-13248, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34268813

RESUMO

To design molecular spin qubits with enhanced quantum coherence, a control of the coupling between the local vibrations and the spin states is crucial, which could be realized in principle by engineering molecular structures via coordination chemistry. To this end, understanding the underlying structural factors that govern the spin relaxation is a central topic. Here, we report the investigation of the spin dynamics in a series of chemically designed europium(II)-based endohedral metallofullerenes (EMFs). By introducing a unique structural difference, i. e. metal-cage binding site, while keeping other molecular parameters constant between different complexes, these manifest the key role of the three low-energy metal-displacing vibrations in mediating the spin-lattice relaxation times (T1 ). The temperature dependence of T1 can thus be normalized by the frequencies of these low energy vibrations to show an unprecedentedly universal behavior for EMFs in frozen CS2 solution. Our theoretical analysis indicates that this structural difference determines not only the vibrational rigidity but also spin-vibration coupling in these EMF-based qubit candidates.

10.
Inorg Chem ; 60(18): 14096-14104, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34415149

RESUMO

Vibrations play a prominent role in magnetic relaxation processes of molecular spin qubits as they couple to spin states, leading to the loss of quantum information. Direct experimental determination of vibronic coupling is crucial to understand and control the spin dynamics of these nano-objects, which represent the limit of miniaturization for quantum devices. Herein, we measure the magneto-infrared properties of the molecular spin qubit system Na9[Ho(W5O18)2]·35H2O. Our results place significant constraints on the pattern of crystal field levels and the vibrational excitations allowing us to unravel vibronic decoherence pathways in this system. We observe field-induced spectral changes near 63 and 370 cm-1 that are modeled in terms of odd-symmetry vibrations mixed with f-manifold crystal field excitations. The overall extent of vibronic coupling in Na9[Ho(W5O18)2]·35H2O is limited by a modest coupling constant (on the order of 0.25) and a transparency window in the phonon density of states that acts to keep the intramolecular vibrations and MJ levels apart. These findings advance the understanding of vibronic coupling in a molecular magnet with atomic clock transitions and suggest strategies for designing molecular spin qubits with improved coherence lifetimes.

11.
J Phys Chem A ; 125(46): 9982-9994, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34767714

RESUMO

The kinetics of the nonradiative photoinduced processes (charge-separation and charge-recombination) experimented in solution by a supramolecular complex formed by an electron-donating bowl-shaped truxene-tetrathiafulvalene (truxTTF) derivative and an electron-accepting fullerene fragment (hemifullerene, C30H12) has been theoretically investigated. The truxTTF·C30H12 heterodimer shows a complex decay mechanism after photoexcitation with the participation of several low-lying excited states of different nature (local and charge-transfer excitations) all close in energy. In this scenario, the absolute rate constants for all of the plausible charge-separation (CS) and charge-recombination (CR) channels have been successfully estimated using the Marcus-Levich-Jortner (MLJ) rate expression, electronic structure calculations, and a multistate diabatization method. The outcomes suggest that for a reasonable estimate of the CS and CR rate constants, it is necessary to include the following: (i) optimally tuned long-range (LC) corrected density functionals, to predict a correct energy ordering of the low-lying excited states; (ii) multistate effects, to account for the electronic couplings; and (iii) environmental solvent effects, to provide a proper stabilization of the charge-transfer excited states and accurate external reorganization energies. The predicted rate constants have been incorporated in a simple but insightful kinetic model that allows estimating global CS and CR rate constants in line with the most generalized three-state model used for the CS and CR processes. The values computed for the global CS and CR rates of the donor-acceptor truxTTF·C30H12 supramolecular complex are found to be in good agreement with the experimental values.

12.
J Am Chem Soc ; 142(50): 21017-21031, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33186011

RESUMO

Columnar polymers and liquid crystals obtained from π-conjugated cone-shaped molecules are receiving increasing interest due to the possibility of obtaining unconventional polar organizations that show anisotropic charge transport and unique chiroptical properties. However, and in contrast to the more common planar discotics, the self-assembly of conic or pyramidic molecules in solution remains largely unexplored. Here, we show how a molecular geometry change, from flat to conic, can generate supramolecular landscapes where different self-assembled species, each of them being under thermodynamic equilibrium with the monomer, exist exclusively within distinct regimes. In particular, depending on the solvent nature-aromatic or aliphatic-cone-shaped C3-symmetric subphthalocyanine 1 can undergo self-assembly either as a tail-to-tail dimer, showing monomer-dimer sigmoidal transitions, or as a head-to-tail noncentrosymmetric columnar polymer, exhibiting a nucleation-elongation polymerization mechanism. Moreover, the experimental and theoretical comparison between racemic and enantiopure samples revealed that the two enantiomers (1M and 1P) tend to narcissistically self-sort in the dimer regime, each enantiomer showing a strong preference to associate with itself, but socially self-sort in the polymer regime, favoring an alternate stacking order along the columns.

13.
Chemistry ; 26(66): 15313-15322, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32608135

RESUMO

The ability of a star-shaped tris(triazolyl)triazine derivative to hierarchically build supramolecular chiral columnar organizations through the formation of H-bonded complexes with benzoic acids was studied from a theoretical and experimental point of view. The combined study has been done at three different levels including the study of the structure of the triazine core, the association with benzoic acids in stoichiometry 1:3, and the assembly of 1:3 complexes in helical aggregates. Although the star-shaped triazine core crystallizes in a non-C3 conformation, the C3 -symmetric conformation is theoretically predicted to be more stable and gives rise to a favorable C3 supramolecular 1:3 complex upon the interaction with three benzoic acids in their voids. In addition, calculations at different levels (DFT, PM7, and MM3) for the 1:3 host-guest complex predict the formation of large stable columnar helical aggregates stabilized by the compact packing of the interstitial acids by π-π and CH⋅⋅⋅π interactions. The acids restrict the movement of the the star-shaped triazine cores along the stacking axis causing a template effect in the self-assembly of the complex. Theoretical predictions correlate with experimental results, since the interaction with achiral or chiral 3,4,5-(4-alkoxybenzyloxy)benzoic acids gives rise to supramolecular complexes that organize in bulk hexagonal columnar mesophases stable at room temperature with intracolumnar order. The existence of supramolecular chirality in the mesophase was determined for complexes formed by acids derived from (S)-2-octanol. Chiral aggregation was also evidenced for complexes formed in dodecane.

14.
Chemistry ; 26(64): 14700-14707, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32722858

RESUMO

A comparative investigation of the chiral amplification features of a series of three families of C3 -symmetric tricarboxamides, 1,3,5-triphenylbenzenetricarboxamides (TPBAs), benzenetricarboxamides (BTAs) and oligo(phenylene ethynylene) tricarboxamides (OPE-TAs), is here reported. As previously observed for BTAs and OPE-TAs, a similar dichroic response is obtained for TPBAs decorated with one, two or three chiral side chains bearing stereogenic centers, thus confirming the efficient transfer of point chirality to the supramolecular helical aggregates. Unlike BTAs and OPE-TAs, the chiral amplification ability of TPBAs in majority rules experiments shows a negligible dependence on the number of chiral centers per monomeric unit, and stands the largest among the series of tricarboxamides. Detailed experimental and theoretical studies demonstrate that the rotation angle between the TPBA units in the helical stack is intermediate to that observed for BTAs and OPE-TAs. This feature strongly conditions the steric interactions between vicinal molecules in the stack and the final chiral amplification outcome. Furthermore, theoretical calculations show that achiral side chains favor the interdigitation of the helical aggregates and thereby the formation of bundle superstructures.

15.
Chemistry ; 26(48): 11039-11047, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32608525

RESUMO

Three novel donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) featuring triazatruxene electron-donating units bridged by different 3,4-ethylenedioxythiophene (EDOT) π-conjugated linkers have been synthesized, characterized, and implemented in mesoporous perovskite solar cells (PSCs). The optoelectronic properties of the new dumbbell-shaped derivatives (DTTXs) are highly influenced by the chemical structure of the EDOT-based linker. Red-shifted absorption and emission and a stronger donor ability were observed in passing from DTTX-1 to DTTX-2 due to the extended π-conjugation. DTTX-3 featured an intramolecular charge transfer between the external triazatruxene units and the azomethine-EDOT central scaffold, resulting in a more pronounced redshift. The three new derivatives have been tested in combination with the state-of-the-art triple-cation perovskite [(FAPbI3 )0.87 (MAPbBr3 )0.13 ]0.92 [CsPbI3 ]0.08 in standard mesoporous PSCs. Remarkable power conversion efficiencies of 17.48 % and 18.30 % were measured for DTTX-1 and DTTX-2, respectively, close to that measured for the benchmarking HTM spiro-OMeTAD (18.92 %), under 100 mA cm-2 AM 1.5G solar illumination. PSCs with DTTX-3 reached a PCE value of 12.68 %, which is attributed to the poorer film formation in comparison to DTTX-1 and DTTX-2. These PCE values are in perfect agreement with the conductivity and hole mobility values determined for the new compounds and spiro-OMeTAD. Steady-state photoluminescence further confirmed the potential of DTTX-1 and DTTX-2 for hole-transport applications as an alternative to spiro-OMeTAD.

16.
J Org Chem ; 85(1): 224-233, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31760753

RESUMO

Three hole-transporting materials (HTMs) were prepared following a straightforward synthetic route by cross-linking arylamine-based ligands with a simple thieno[3,2-b]thiophene (TbT) core. The novel HTMs were fully characterized with standard techniques to gain insight into their optical and electrochemical properties and were incorporated in solution-processed mesoporous (FAPbI3)0.85(MAPbBr3)0.15 perovskite-based solar cells. The similar molecular structure of the synthesized HTMs was leveraged to investigate the role that the bridging units between the conjugated TbT core and the peripheral arylamine units plays on their properties and thereby on the photovoltaic response. A remarkable power conversion efficiency exceeding 18% was achieved for one of the TbT derivatives, which was slightly higher than the value measured for the benchmark spiro-OMeTAD.

17.
J Am Chem Soc ; 141(18): 7463-7472, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30983341

RESUMO

A complete series of experimental and theoretical investigations on the supramolecular polymerization of chiral (1 and 2) and achiral (3) oligo(phenylene ethynylene) tricarboxamides (OPE-TAs) is reported. The performance of seargents-and-soldiers (SaS) and majority rules (MR) experiments has allowed deriving a full set of thermodynamic parameters, including the helix reversal penalty (HRP) and the mismatch penalty (MMP). The results described illustrate the influence exerted by the number of stereogenic centers per monomeric unit and the temperature on the chiral amplification phenomenon. While the HRP decreases upon decreasing the number of chiral side chains, the MMP follows an opposite trend. The experimental trend observed in MR experiments contrasts with that reported for benzenetricarboxamides (BTAs), for which the chiral amplification ability increases by lowering the number of stereogenic centers or increasing the temperature. Theoretical calculations predict that the rotational angle between adjacent monomeric units in the stack (ca. 18°) gradually decreases when decreasing the number of branched chiral side chains and leads to higher MMP values, in good accord with the experimental trend. The reduction of the rotational angle gives rise to less efficient H-bonding interactions between the peripheral amide functional groups and is suggested to provoke a decrease of the HRP as experimentally observed. In BTAs, increasing the number of stereogenic centers per monomeric unit results in a negligible change of the rotation angle between adjacent units (ca. 65°), and, consequently, the steric bulk increases with the number of chiral side chains, leading to higher MMP values. The data presented herein contribute to shed light on the parameters controlling the transfer and amplification of chirality processes in supramolecular polymers, highlighting the enormous influence exerted by the size of the self-assembling unit on the final helical outcome.

18.
Phys Chem Chem Phys ; 21(22): 11670-11675, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31125037

RESUMO

A new series of fullerene receptors based on exTTF macrocycles with alkyl ether chains of increasing length is reported. The novel macrocyclic receptors are able to favourably interact with fullerene C60 through a synergistic combination of π-π, CHπ and nπ noncovalent interactions. We identify that the highest affinity towards C60 recognition is achieved for the host with the tightest fit; that is, the smallest receptor with a cavity large enough to host the buckyball inside (log Ka = 5.2 in chlorobenzene at 298 K). However, besides this expected observation, theoretical calculations evidence that the most stable self-assembling configuration corresponds for all the receptors to an outside-ring binding mode, in which the C60 guest is out of the cavity of the receptor. The higher stability of this configuration results from the smaller deformation energy it implies for the receptor, and allows to explain the experimental trends in the association constants.

19.
Chemistry ; 24(12): 2826-2831, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29336510

RESUMO

A detailed investigation of the hierarchy of asymmetry operating in the self-assembly of achiral (1) and chiral ((S)-2 and (R)-3) 1,3,5-triphenylbenzenetricarboxamides (TPBAs) is reported. The aggregation of these TPBAs is conditioned by the point chirality at the peripheral side chains for (S)-2 and (R)-3. An efficient helix-to-helix interaction that goes further in the organization of fibrillar bundles is experimentally detected and theoretically supported only for the achiral TPBA 1. The effective interdigitation of the achiral aliphatic side chains produces a social self-sorting to form preferentially heterochiral macromolecular aggregates.

20.
J Phys Chem A ; 122(4): 1124-1137, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29266944

RESUMO

Buckybowls have risen as appealing fullerene fragment derivatives. Their intrinsic curvature has been exploited in the generation of host-guest supramolecular assemblies, not only through concave-convex complementarity but also through less-known concave-concave staggered arrangements. Whereas the stabilization of bowl-in-bowl dispositions has been ascribed to efficient π-π forces together with favorable dipole-dipole interactions, a detailed analysis on the forces guiding the formation of the staggered arrangements is missing so far. Herein, we present a thorough theoretical characterization of bowl-in-bowl vs staggered hemifullerene-based homodimers and heterodimers with the electron-donor truxTTF molecule, as test cases, under the density functional theory and by means of chemical bonding techniques. Our results clearly reveal strong and localized noncovalent signatures, together with an enhanced orbital interaction, associated with CH-π and sulfur-mediated interactions governing the staggered formation. Bending the fullerene fragment is demonstrated to favor the stabilization in both homo- and heterodimers, in good accord with the depletion in the π-electron density calculated upon increasing the buckybowl curvature. The optimal buckybowl curvature for the highest interaction energy is, however, dependent on the type of supramolecular assembly (bowl-in-bowl vs staggered) and the concave region to which hemifullerene approaches truxTTF. Interestingly, two regimes are found as a function of buckybowl curvature for hemifullerene homodimers: bowl-in-bowl dispositions are calculated more stable at low curvatures whereas staggered dimers prevail for highly curved buckybowls. Our results highlight the potential of discrete CH-π and sulfur-mediated interactions to generate unconventional staggered supramolecular arrangements toward the development of a new and unexplored host-guest chemistry.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa