Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Kidney Int ; 105(6): 1291-1305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537677

RESUMO

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease pathologically characterized by vascular necrosis with inflammation. During AAV development, activated neutrophils produce reactive oxygen species (ROS), leading to the aberrant formation of neutrophil extracellular traps (NETs) via NETosis and subsequent fibrinoid vascular necrosis. Nuclear factor-erythroid 2-related factor 2 (Nrf2) functions as an intracellular defense system to counteract oxidative stress by providing antioxidant properties. Herein, we explored the role of Nrf2 in the pathogenesis of AAV. The role and mechanism of Nrf2 in ANCA-stimulated neutrophils and subsequent endothelial injury were evaluated in vitro using Nrf2 genetic deletion and Nrf2 activator treatment. In corresponding in vivo studies, the role of Nrf2 in ANCA-transfer AAV and spontaneous AAV murine models was examined. Pharmacological activation of Nrf2 in vitro suppressed ANCA-induced NET formation via the inhibition of ROS. In contrast, NET formation was enhanced in Nrf2-deficient neutrophils. Furthermore, Nrf2 activation protected endothelial cells from ANC-induced NETs-mediated injury. In vivo, Nrf2 activation ameliorated glomerulonephritis in two AAV models by upregulating antioxidants and inhibiting ROS-mediated NETs. Furthermore, Nrf2 activation restrained the expansion of splenic immune cells, including T lymphocytes and limited the infiltration of Th17 cells into the kidney. In contrast, Nrf2 genetic deficiency exacerbated vasculitis in a spontaneous AAV model. Thus, the pathophysiological process in AAV may be downregulated by Nrf2 activation, potentially leading to a new therapeutic strategy by regulating NETosis.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Modelos Animais de Doenças , Armadilhas Extracelulares , Camundongos Knockout , Fator 2 Relacionado a NF-E2 , Neutrófilos , Peroxidase , Espécies Reativas de Oxigênio , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peroxidase/metabolismo , Peroxidase/genética , Camundongos , Humanos , Estresse Oxidativo/imunologia , Camundongos Endogâmicos C57BL , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Glomerulonefrite/genética , Glomerulonefrite/metabolismo , Glomerulonefrite/etiologia , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Masculino , Rim/patologia , Rim/imunologia , Transdução de Sinais/imunologia
2.
Arch Biochem Biophys ; 640: 47-52, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29336940

RESUMO

Myeloperoxidase (MPO) is a heme-containing peroxidase expressed mainly in neutrophils and to a lesser degree in monocytes. In the presence of hydrogen peroxide and halides, MPO catalyzes the formation of reactive oxygen intermediates, including hypochlorous acid (HOCl). The MPO/HOCl system plays an important role in microbial killing by neutrophils. In addition, MPO has been demonstrated to be a local mediator of tissue damage and the resulting inflammation in various inflammatory diseases. These findings have implicated MPO as an important therapeutic target in the treatment of inflammatory conditions. In contrast to its injurious effects at sites of inflammation, recent studies using animal models of various inflammatory diseases have demonstrated that MPO deficiency results in the exaggeration of inflammatory response, and that it affects neutrophil functions including cytokine production. Given these diverse effects, a growing interest has emerged in the role of this well-studied enzyme in health and disease.


Assuntos
Inflamação/enzimologia , Neutrófilos/imunologia , Peroxidase/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , Peroxidase/genética
3.
Clin Exp Rheumatol ; 35(5): 735-738, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28850023

RESUMO

OBJECTIVES: Pentraxin 3 (PTX3) is a multifunctional soluble factor. PTX3 can be involved in the regulation of vasculitis and is expressed in the cytoplasm of neutrophils. As anti-neutrophil cytoplasmic antibody (ANCA) is recognised as a cause of vasculitis, we aimed to discover the role of PTX3 in ANCA production in vivo. METHODS: To this end, we used aluminum salt (alum), which induces neutrophil extracellular traps, as an adjuvant for producing anti-myeloperoxidase-ANCA (MPO-ANCA). Specifically, we intraperitoneally injected alum and recombinant MPO (rMPO) into MPO-deficient mice and then measured the concentration of anti-MPO IgG in their blood. To show the involvement of extracellular PTX3 in this model, we assessed PTX3 protein content and host double-stranded DNA levels in the mice's peritoneal fluid after alum injection. In addition, we simultaneously administered recombinant PTX3, rMPO and alum to MPO-deficient mice to assess the function of PTX3 in producing anti-MPO IgG in vivo. RESULTS: Anti-MPO IgG was produced by the alum + rMPO immunisation model in MPO-deficient but not wildtype mice. Injection of alum induced extracellular PTX3 as well as double-stranded DNA and dead cells in MPO-deficient mice. Simultaneous injection of recombinant PTX3 with rMPO and alum attenuated the production of anti-MPO IgG in MPO-deficient mice. CONCLUSIONS: Our current findings provide evidence that PTX3 attenuates the production of murine MPO-ANCA.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Anticorpos Anticitoplasma de Neutrófilos/sangue , Proteína C-Reativa/imunologia , Imunoglobulina G/sangue , Erros Inatos do Metabolismo/imunologia , Proteínas do Tecido Nervoso/imunologia , Peroxidase/imunologia , Animais , Líquido Ascítico/imunologia , Líquido Ascítico/metabolismo , Proteína C-Reativa/administração & dosagem , Proteína C-Reativa/metabolismo , DNA/imunologia , DNA/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Feminino , Masculino , Erros Inatos do Metabolismo/sangue , Erros Inatos do Metabolismo/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/metabolismo , Peroxidase/administração & dosagem , Peroxidase/deficiência , Peroxidase/genética
4.
Inflamm Res ; 65(2): 151-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26573963

RESUMO

OBJECTIVE: We have previously reported that myeloperoxidase-deficient (MPO(-/-)) neutrophils produce greater amounts of macrophage inflammatory protein-2 (MIP-2) upon in vitro stimulation with zymosan than wild-type neutrophils. This study aimed to examine the effect of MPO deficiency on the expression of other cytokines and chemokines. METHODS: Wild-type and MPO(-/-) neutrophils isolated from peritoneal cavity were stimulated with zymosan in vitro. Secretion of MIP-1α, MIP-1ß, interleukin (IL)-1α, IL-1ß, and tumor necrosis factor (TNF)-α by neutrophils was quantified by ELISA. mRNA expression in the neutrophils was analyzed by real-time reverse transcription-PCR, and the phosphorylation of extracellular-signal regulated kinase (ERK) 1/2 and p38 mitogen activated protein kinase (MAPK) in neutrophils was analyzed by western blot. For in vivo studies, mice were inoculated with zymosan intranasally, and the levels of these cytokines and chemokines were measured in the lungs. RESULTS: The MPO(-/-) neutrophils stimulated by zymosan expressed and secreted significantly higher levels of MIP-1α, MIP-1ß, IL-1α, IL-1ß, and TNF-α than the stimulated wild-type cells. Expression of all of these inflammatory mediators was blocked by pre-treatment with BAY11-7082, U0126, and SB203580, which are inhibitors of nuclear factor (NF)-κB, ERK1/2, and p38 MAPK, respectively. Enhanced expression of these inflammatory mediators is associated with elevated activation of ERK1/2 in stimulated MPO(-/-) neutrophils. In vivo, MPO(-/-) mice had significantly higher numbers of alveolar neutrophils and increased production of MIP-1α, MIP-1ß, IL-1α, IL-1ß, and TNF-α relative to the responses seen in wild-type mice within 24 h of zymosan administration. CONCLUSION: MPO deficiency upregulates the expression of several proinflammatory cytokines and chemokines in mouse neutrophils.


Assuntos
Citocinas/metabolismo , Pulmão/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Peroxidase/genética , Zimosan/farmacologia , Animais , Líquido da Lavagem Broncoalveolar/química , Citocinas/genética , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo , RNA Mensageiro/metabolismo
5.
Inflamm Res ; 62(11): 981-90, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23955550

RESUMO

OBJECTIVE: This study aimed to evaluate the effect of myeloperoxidase (MPO) deficiency on lung inflammation induced by nonviable Candida albicans (nCA). METHODS: Mice were inoculated intranasally with nCA, and accumulation of neutrophils and macrophages in the bronchoalveolar lavage fluid was analyzed by flow cytometry. The levels of macrophage inflammatory protein 2 (MIP-2), keratinocyte-derived chemokine (KC), tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß in the lung were measured by ELISA. Production of MIP-2 and KC from neutrophils and macrophages was quantified in vitro. MIP-2 mRNA expression in the neutrophils was analyzed by real-time reverse transcription-PCR, and the extent of phosphorylation of ERK1/2 and Syk in the neutrophils was analyzed by Western blotting. RESULTS: The MPO(-/-) mice that received nCA showed more severe pneumonia than wild-type mice. Within 12 h of nCA administration, MPO(-/-) mice had significantly higher numbers of alveolar neutrophils and increased production of MIP-2 and KC relative to the responses seen in wild-type mice. Neutralization of MIP-2 and KC in vivo significantly reduced neutrophil infiltration. In vitro, production of MIP-2, but not that of KC, was enhanced in the nCA-stimulated neutrophils from MPO(-/-) mice, concomitant with up-regulation of Syk and ERK1/2. At 1 and 3 days after nCA administration, MPO(-/-) mice had significantly higher lung concentrations of TNF-α and IL-1ß than wild-type mice. CONCLUSION: Pulmonary administration of nCA produced an altered inflammatory response in MPO(-/-) mice relative to wild-type mice. Enhanced MIP-2 production by MPO(-/-) neutrophils may at least partly contribute to exacerbated inflammation in mutant mice.


Assuntos
Candida albicans/imunologia , Erros Inatos do Metabolismo/imunologia , Pneumonia/imunologia , Animais , Células da Medula Óssea/citologia , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/genética , Citocinas/imunologia , Fêmur/citologia , Pulmão/imunologia , Pulmão/patologia , Macrófagos/imunologia , Erros Inatos do Metabolismo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Pneumonia/patologia
6.
Arthritis Rheumatol ; 75(1): 71-83, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905194

RESUMO

OBJECTIVE: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is pathologically characterized by focal fibrinoid necrosis, in which ANCA-mediated neutrophil extracellular trap (NET) formation and subsequent endothelial cell necrosis occur. Cyclophilin D (CypD) plays an important role in mediation of cell necrosis and inflammation via the opening of mitochondrial permeability transition pores. This study was undertaken to examine the role of CypD in AAV pathogenesis. METHODS: We assessed the role and mechanism of CypD in ANCA-stimulated neutrophils in vitro by immunostaining and electron microscopy observation. We performed a comprehensive RNA-sequencing analysis on ANCA-treated murine neutrophils. To investigate the role of CypD in vivo, we assessed disease features in CypD-knockout mice and wild-type mice using 2 different murine AAV models: anti-myeloperoxidase IgG transfer-induced AAV and spontaneous AAV. RESULTS: In vitro experiments showed that pharmacologic and genetic inhibition of CypD suppressed ANCA-induced NET formation via the suppression of reactive oxygen species and cytochrome c release from the mitochondria. RNA-sequencing analyses in ANCA-treated murine neutrophils revealed the involvement of inflammatory responses, with CypD deficiency reducing ANCA-induced alterations in gene expression. Furthermore, analyses of upstream regulators revealed the relevance of intracellular calcium (CypD activator) and cyclosporin (CypD inhibitor) in ANCA stimulation, indicating that the CypD-dependent opening of mitochondrial permeability transition pores is associated with ANCA-induced neutrophil activation and NETosis. In both AAV mouse models, the genetic deletion of CypD ameliorated crescentic glomerulonephritis via the inhibition of CypD-dependent neutrophil and endothelial necrosis. CONCLUSION: CypD targeting is a novel and specific therapeutic strategy for AAV via the resolution of necrotizing vasculitis.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Peptidil-Prolil Isomerase F , Animais , Camundongos , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Inflamação , Necrose , Neutrófilos/metabolismo , RNA
7.
Inflamm Res ; 61(3): 197-205, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22116298

RESUMO

OBJECTIVE AND DESIGN: This study examines the role of myeloperoxidase (MPO), a major constituent of neutrophils that generates hypochlorous acid, in neutrophil recruitment into the zymosan-exposed lung of mice. METHODS: Mice were inoculated intranasally with zymosan. The accumulation of neutrophils and other inflammatory cells within the lung was analyzed by flow cytometry. Macrophage inflammatory protein 2 (MIP-2) expression in the lung was quantified, and the contribution of this chemokine to neutrophil accumulation was examined by intranasal administration of MIP-2 antibody. The cellular sources of MIP-2 were identified, and the production of this chemokine from macrophages and neutrophils was quantified in vitro. RESULTS: Zymosan exposure led to greater neutrophil infiltration into the lungs of MPO(-/-) mice relative to wild-type mice. This was associated with higher MIP-2 levels in the mutant mice. Neutralization of MIP-2 in vivo significantly reduced neutrophil infiltration. Neutrophils from MPO(-/-) mice produced more MIP-2, and the production was reduced when MPO was added exogenously. CONCLUSIONS: MPO deficiency results in severe lung inflammation in mice exposed to zymosan. Relatively high MIP-2 levels likely contribute to the strong inflammatory response in these animals.


Assuntos
Quimiocina CXCL2/imunologia , Neutrófilos/imunologia , Peroxidase/imunologia , Pneumonia/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidase/deficiência , Peroxidase/genética , Pneumonia/induzido quimicamente , Pneumonia/patologia , Zimosan
8.
Microbiol Immunol ; 56(3): 171-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22211924

RESUMO

Because the pathogenesis of acute respiratory distress syndrome (ARDS) induced by influenza virus infection remains unknown, we can only improve on existing therapeutic interventions. To approach the subject, we investigated immunological etiology focused on cytokines and an acute lung damage factor in influenza-induced ARDS by using a PR-8 (A/H1N1)-infected mouse model. The infected mouse showed fulminant severe pneumonia with leukocyte infiltration, claudin alteration on tight junctions, and formation of hyaline membranes. In addition to interferon (IFN)-α, plenty of keratinocyte-derived chemokines (KC), macrophage inflammatory protein 2 (MIP-2), regulated on activation normal T-cell expressed and secreted (RANTES), and monocyte chemotactic protein 1 (MCP-1) were significantly released into bronchoalveolar lavage fluid (BALF) of the model. We focused on neutrophil myeloperoxidase (MPO) as a potent tissue damage factor and examined its contribution in influenza pneumonia by using mice genetically lacking in MPO. The absence of MPO reduced inflammatory damage with suppression of leakage of total BALF proteins associated with alteration of claudins in the lung. MPO(-/-) mice also suppressed viral load in the lung. The present study suggests that MPO-mediated OCl(-) generation affects claudin molecules and leads to protein leakage and viral spread as a damage factor in influenza-induced ARDS.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/patologia , Peroxidase/metabolismo , Síndrome do Desconforto Respiratório/patologia , Animais , Citocinas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Peroxidase/deficiência , Pneumonia Viral/patologia
10.
Inflammation ; 45(4): 1668-1679, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35211862

RESUMO

Chronic granulomatous disease (CGD) is a primary immunodeficiency wherein phagocytes are unable to produce reactive oxygen species (ROS) owing to a defect in the nicotinamide adenine dinucleotide phosphate oxidase (NADPH) complex. Patients with CGD experience bacterial and fungal infections and excessive inflammatory disorders. Bone marrow transplantation and gene therapy are theoretically curative; however, residual pathogenic components cause inflammation and/or organic damage in patients. Moreover, antibiotic treatments may not help in preventing excessive inflammation due to the residual presence of fungal cell wall ß-glucan. Thus, better treatment strategies against CGD are urgently required. Polyethylene glycol-conjugated recombinant porcine D-amino acid oxidase (PEG-pDAO) supplies ROS to defective NADPH oxidase in neutrophils of patients with CGD, following which the neutrophils regain bactericidal activity in vitro. In this study, we employed an in vivo nonviable Candida albicans (nCA)-induced lung inflammation model of gp91-phox knockout CGD mice and supplied novel PEG conjugates of Fusarium spp. D-amino acid oxidase (PEG-fDAO), as it exhibits higher enzyme activity than PEG-pDAO. The body weight, lung weight, and lung pathology were evaluated using three experimental strategies with the in vivo lung inflammation model to test the efficacy of the ROS-generating enzyme replacement therapy with PEG-fDAO. The lung weight and pathological findings suggest the condition was ameliorated by administration PEG-fDAO, followed by intraperitoneal injection of D-phenylalanine or D-proline. Although a more precise protocol is essential, these data reveal the targeted delivery of PEG-fDAO to the nCA-induced inflammation site and show that PEG-fDAO can be used to treat inflammation in CGD in vivo.


Assuntos
Doença Granulomatosa Crônica , Pneumonia , Aminoácidos , Animais , Modelos Animais de Doenças , Doença Granulomatosa Crônica/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Camundongos , Camundongos Knockout , NADPH Oxidases/genética , Neutrófilos , Polietilenoglicóis/farmacologia , Espécies Reativas de Oxigênio , Suínos
11.
J Lipid Res ; 52(1): 87-97, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20921334

RESUMO

3ß-Hydroxy-5-oxo-5,6-secocholestan-6-al (secosterol-A) and its aldolization product 3ß-hydroxy-5ß-hydroxy-B-norcholestane-6ß-carboxaldehyde (secosterol-B) were recently detected in human atherosclerotic tissues and brain specimens, and they may play pivotal roles in the pathogenesis of atherosclerosis and neurodegenerative diseases. However, as their origin remains unidentified, we examined the formation mechanism, the stability, and the fate of secosterols in vitro and in vivo. About 40% of secosterol-A remained unchanged after 3 h incubation in the FBS-free medium, whereas 20% and 40% were converted to its aldehyde-oxidation product, 3ß-hydroxy-5-oxo-secocholestan-6-oic acid, and secosterol-B, respectively. In the presence of FBS, almost all secosterol-A was converted immediately to these compounds. Secosterol-B in the medium, with and without FBS, was relatively stable, but ∼30% was converted to its aldehyde-oxidation product, 3ß-hydroxy-5ß-hydroxy-B-norcholestane-6-oic acid (secoB-COOH). When neutrophil-like differentiated human leukemia HL-60 (nHL-60) cells activated with PMA were cultured in the FBS-free medium containing cholesterol, significantly increased levels of secosterol-A and its aldehyde-oxidation product, but not secosterol-B, were formed. This secosterol-A formation was decreased in the culture of PMA-activated nHL-60 cells containing several reactive oxygen species (ROS) inhibitors and scavengers or in the culture of PMA-activated neutrophils isolated from myeloperoxidase (MPO)-deficient mice. Our results demonstrate that secoterol-A is formed by an ozone-like oxidant generated with PMA-activated neutrophils through the MPO-dependent mechanism.


Assuntos
Colestanol/análogos & derivados , Colestanonas/metabolismo , Colesterol/metabolismo , Noresteroides/metabolismo , Ozônio/metabolismo , Peroxidase/metabolismo , Secoesteroides/metabolismo , Animais , Diferenciação Celular , Colestanol/metabolismo , Células HL-60 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
12.
J Biol Chem ; 285(12): 9282-91, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20081197

RESUMO

Myeloperoxidase (MPO) generates reactive halogenating species that can modify DNA. The aim of this study was to investigate the formation of 8-halogenated 2'-deoxyguanosines (8- halo-dGs) during inflammatory events. 8-Bromo-2'-dG (8-BrdG) and 8-chloro-2'-dG (8-CldG) were generated by treatment of MPO with hydrogen peroxide at physiological concentrations of Cl(-) and Br(-). The formation of 8-halo-dGs with other oxidative stress biomarkers in lipopolysaccharide-treated rats was assessed by liquid chromatography tandem mass spectrometry and immunohistochemistry using a novel monoclonal antibody (mAb8B3) to 8-BrdG-conjugated keyhole limpet hemocyanin. The antibody recognized both 8-BrdG and 8-CldG. In the liver of lipopolysaccharide-treated rats, immunostaining for 8-halo-dGs, halogenated tyrosines, and MPO were increased at 8 h, whereas those of 8-oxo-2'-dG (8-OxodG) and 3-nitrotyrosine were increased at 24 h. Urinary excretion of both 8-CldG and 8-BrdG was also observed earlier than those of 8-OxodG and modified tyrosines (3-nitrotyrosine, 3-chlorotyrosine, and 3- bromotyrosine). Moreover, the levels of the 8-halo-dGs in urine from human diabetic patients were 8-fold higher than in healthy subjects (n = 10, healthy and diabetic, p < 0.0001), whereas there was a moderate difference in 8-OxodG between the two groups (p < 0.001). Interestingly, positive mAb8B3 antibody staining was observed in liver tissue from hepatocellular carcinoma patients but not in liver tissue from human cirrhosis patients. These data suggest that 8-halo-dGs may be potential biomarkers of early inflammation.


Assuntos
Desoxiguanosina/química , Inflamação/patologia , 8-Hidroxi-2'-Desoxiguanosina , Animais , Anticorpos Monoclonais/química , Cromatografia Líquida/métodos , Desoxiguanosina/análogos & derivados , Feminino , Halogênios/química , Lipopolissacarídeos/química , Fígado/metabolismo , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Tirosina/análogos & derivados , Tirosina/química
13.
Nephrol Dial Transplant ; 26(9): 2752-60, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21378392

RESUMO

BACKGROUND: Glomerular neutrophil infiltration has been thought to be a key pathological event in the development of myeloperoxidase (MPO)-specific anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis involving glomerulonephritis. Accordingly, we sought to explore the molecules responsible for glomerular neutrophil accumulation. METHODS: Glomerular neutrophil infiltration and renal chemokine expression in mice treated with anti-MPO IgG were evaluated. Chemokine expression in vitro induced by anti-MPO IgG was measured in the primary mouse glomerular endothelial cells (mGEC). The target molecule reacted with anti-MPO IgG on the mGEC was determined by peptide mass fingerprint analysis. RESULTS: A significant glomerular neutrophil infiltration was observed in the mice administered with anti-MPO IgG. The expressions of CXC chemokines, keratinocyte-derived chemokine (KC) and macrophage inflammatory protein-2 (MIP-2), were significantly increased in the renal cortex, indicating that these chemokines contribute to the neutrophil infiltration. Based on the previous findings of upregulation of adhesion molecule expression in mGEC treated with anti-MPO IgG, we examined whether mGEC secrete these chemokines in response to anti-MPO IgG. Indeed, anti-MPO IgG induced secretion of KC and MIP-2, leading to neutrophil chemotaxis in vitro. Furthermore, complete depletion of MPO in mGEC and serum using MPO-deficient mice showed an upregulation of intercellular adhesion molecule-1, indicating cross-reactive molecule(s) were existing on mGEC. We identified the molecule as moesin by a proteomic approach. CONCLUSIONS: The endothelial CXC chemokines, KC and MIP-2, contribute to infiltration of neutrophils in MPO-ANCA-associated vasculitis involving glomerulonephritis. The activation of glomerular endothelial cells by anti-MPO IgG appeared to directly involve a signaling through moesin.


Assuntos
Anticorpos Anti-Idiotípicos/sangue , Anticorpos Anti-Idiotípicos/imunologia , Células Endoteliais/metabolismo , Glomerulonefrite/metabolismo , Glomérulos Renais/metabolismo , Proteínas dos Microfilamentos/imunologia , Peroxidase/fisiologia , Animais , Western Blotting , Células Cultivadas , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Eletroforese em Gel Bidimensional , Células Endoteliais/imunologia , Células Endoteliais/patologia , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Microbiol Immunol ; 55(12): 874-84, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22039999

RESUMO

Influenza virus infection causes severe respiratory disease such as that due to avian influenza (H5N1). Influenza A viruses proliferate in human epithelial cells, which produce inflammatory cytokines/chemokines as a "cytokine storm" attenuated with the viral nonstructural protein 1 (NS1). Cytokine/chemokine production in A549 epithelial cells infected with influenza A/H1N1 virus (PR-8) or nonstructural protein 1 (NS1) plasmid was examined in vitro. Because tumor necrosis factor-α (TNF-α) and regulated upon activation normal T-cell expressed and secreted (RANTES) are predominantly produced from cells infected with PR-8 virus, the effects of mRNA knockdown of these cytokines were investigated. Small interfering (si)TNF-α down-regulated RANTES expression and secretion of RANTES, interleukin (IL)-8, and monocyte chemotactic protein-1 (MCP-1). In addition, siRANTES suppressed interferon (IFN)-γ expression and secretion of RANTES, IL-8, and MCP-1, suggesting that TNF-α stimulates production of RANTES, IL-8, MCP-1, and IFN-γ, and RANTES also increased IL-8, MCP-1, and IFN-γ. Furthermore, administration of TNF-α promoted increased secretion of RANTES, IL-8, and MCP-1. Administration of RANTES enhanced IL-6, IL-8, and MCP-1 production without PR-8 infection. These results strongly suggest that, as an initial step, TNF-α regulates RANTES production, followed by increase of IL-6, IL-8, and MCP-1 and IFNs concentrations. At a later stage, cells transfected with viral NS1 plasmid showed production of a large amount of IL-8 and MCP-1 in the presence of the H(2)O(2)-myeloperoxidse (MPO) system, suggesting that NS1 of PR-8 may induce a "cytokine storm" from epithelial cells in the presence of an H(2)O(2)-MPO system.


Assuntos
Quimiocina CCL5/metabolismo , Células Epiteliais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Peroxidase/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL5/administração & dosagem , Quimiocina CCL5/genética , Quimiocinas/efeitos dos fármacos , Quimiocinas/genética , Quimiocinas/fisiologia , Citocinas/efeitos dos fármacos , Citocinas/genética , Citocinas/fisiologia , Regulação para Baixo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/farmacologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/virologia , Ativação Linfocitária , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/virologia , Peroxidase/administração & dosagem , RNA Interferente Pequeno , Proteínas Recombinantes , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Proteínas não Estruturais Virais/genética
15.
J Immunol ; 182(12): 7990-6, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19494324

RESUMO

Lung neutrophilia is common to a variety of lung diseases. The production of reactive oxygen and nitrogen species during neutrophil oxidative burst has been associated with protein and DNA damage. Myeloperoxidase (MPO) is an enzyme stored in the azurophilic granula of neutrophils. It is important in host defense because it generates the reactive oxidant hypochlorous acid and has been described to play a role in the activation of neutrophils during extravasation. We hypothesized that MPO contributes directly to the development of acute lung neutrophilia via stimulation of neutrophil extravasation and indirectly to the subsequent production of cytokines and chemokines in the lung. To test this hypothesis, wild-type (WT) and Mpo(-/-) mice were given a single LPS instillation, after which the development of neutrophil-dominated lung inflammation, oxidative stress, and cytokine and chemokine levels were examined. Mpo(-/-) mice demonstrated a decreased lung neutrophilia that peaked earlier than neutrophilia in WT mice, which can be explained by decreased neutrophil chemoattractant levels in LPS-exposed Mpo(-/-) compared with WT mice. However, oxidative stress levels were not different in LPS-exposed WT and Mpo(-/-) mice. Furthermore, in vivo findings were confirmed by in vitro studies, using isolated neutrophils. These results indicate that MPO promotes the development of lung neutrophilia and indirectly influences subsequent chemokine and cytokine production by other cell types in the lung.


Assuntos
Citocinas/biossíntese , Citocinas/imunologia , Lipopolissacarídeos/farmacologia , Peroxidase/metabolismo , Pneumonia/enzimologia , Pneumonia/imunologia , Doença Aguda , Animais , Movimento Celular , Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Neutrófilos/enzimologia , Peroxidase/deficiência , Peroxidase/genética , RNA Mensageiro/genética
16.
Inflammation ; 44(1): 371-382, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32939668

RESUMO

Patients with chronic granulomatous disease (CGD) who have mutated phagocyte NADPH oxidase are susceptible to infections due to reduced reactive oxygen species production and exhibit autoimmune and inflammatory diseases in the absence of evident infection. Neutrophils and macrophages have been extensively studied since phagocyte NADPH oxidase is mainly found only in them, while the impact of its deficiency on lymphocyte cellularity is less well characterized. We showed herein a zymosan-induced systemic inflammation model that CGD mice deficient in the phagocyte NADPH oxidase gp91phox subunit (NOX2) exhibited more severe thymic atrophy associated with peripheral blood and splenic lymphopenia and reduced lymphopoiesis in the bone marrow in comparison with the wild-type mice. Conversely, the zymosan-exposed CGD mice suffered from more remarkable neutrophilic lung inflammation, circulating and splenic neutrophilia, and enhanced granulopoiesis compared with those in zymosan-exposed wild-type mice. Overall, this study provided evidence that NOX2 deficiency exhibits severe thymic atrophy and lymphopenia concomitant with enhanced neutrophilic inflammation in a zymosan-induced systemic inflammation model.


Assuntos
Linfopenia/metabolismo , Linfopoese/fisiologia , NADPH Oxidase 2/deficiência , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Timo/metabolismo , Zimosan/toxicidade , Animais , Atrofia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Doença Granulomatosa Crônica/induzido quimicamente , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/patologia , Linfopenia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/patologia , Timo/efeitos dos fármacos , Timo/patologia
17.
Front Cell Dev Biol ; 9: 718586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568331

RESUMO

Neutrophil extracellular traps (NETs) are web-like structures consisting of decondensed chromatin DNA and contents of granules, such as myeloperoxidase (MPO) and neutrophil elastase (NE). NETs are usually released from neutrophils undergoing NETosis, a neutrophil-specific cell death mode characterized by the collapse and disappearance of cell membranes and nuclear envelopes. It is well known that production of reactive oxygen species (ROS) triggers NETosis and NET formation. However, details of intracellular signaling downstream of ROS production during NETosis and NET formation remains uncertain. Here, we demonstrated that the peroxidation of phospholipids plays a critical role in NETosis and NET formation induced by phorbol 12-myristate13-acetate (PMA) or immune complex in vitro and by lipopolysaccharide (LPS) in vivo. This phospholipid peroxidation is mediated by the enzymatic activity of MPO. On the other hand, NE, which was previously reported to be released from granules to cytosol by MPO during NET formation, is not required for either the peroxidation of phospholipids or the execution of NETosis, but contributes to chromatin decondensation and nuclear swelling independently of MPO-mediated oxidized phospholipids. Analysis of isolated nuclei clearly demonstrated that oxidized phospholipids and NE differently yet synergistically execute chromatin decondensation and nuclear swelling, and the subsequent release of nuclear contents. These findings indicate the dual roles of MPO in NETosis and NET formation, and provide new insight into the molecular mechanism of these phenomena.

18.
Cancer Sci ; 99(5): 973-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18380790

RESUMO

Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat-induced DNA double-strand breaks (DSB), and that thermotolerance also depends on the suppression of DSB formation. However the critical elements involved in thermotolerance have not yet been fully identified. Heat produces DSB and leads to cell death through denaturation and dysfunction of heat-labile repair proteins such as DNA polymerase-beta (Pol beta). Here the authors show that thermotolerance was partially suppressed in Pol beta(-/-) mouse embryonic fibroblasts (MEF) when compared to the wild-type MEF, and was also suppressed in the presence of the HSP inhibitor, KNK437, in both cell lines. Moreover, the authors found that heat-induced gamma H2AX was suppressed in the thermotolerant cells. These results suggest that Pol beta at least contributes to thermotolerance through its reactivation and stimulation by Hsp27 and Hsp70. In addition, it appears possible that fewer DSB were formed after a challenging heat exposure because preheat-induced Hsp27 and Hsp70 can rescue or restore other, as yet unidentified, heat-labile proteins besides Pol beta. The present novel findings provide strong evidence that Pol beta functions as a critical element involved in thermotolerance and exerts an important role in heat-induced DSB.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase beta/metabolismo , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Animais , Compostos Benzidrílicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Febre/metabolismo , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Modelos Biológicos , Pirrolidinonas/farmacologia
19.
J Clin Invest ; 110(7): 955-63, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12370273

RESUMO

Antineutrophil cytoplasmic autoantibodies (ANCAs) are identified in the circulation of approximately 80% of patients with pauci-immune necrotizing and crescentic glomerulonephritis and systemic small vessel vasculitis, such as microscopic polyangiitis and Wegener granulomatosis. The most common antigen target for ANCAs is myeloperoxidase (MPO), which is found in neutrophils and monocytes. We report definitive experimental animal evidence that ANCAs are pathogenic. MPO knockout (Mpo(-/-)) mice were immunized with mouse MPO. Splenocytes from these mice or from control mice were injected intravenously into recombinase-activating gene-2-deficient (Rag2(-/-)) mice, which lack functioning B lymphocytes and T lymphocytes. All mice that received splenocytes developed mild to moderate glomerular immune deposits, but only mice that received 1 x 10(8) or 5 x 10(7) anti-MPO splenocytes developed severe necrotizing and crescentic glomerulonephritis, granulomatous inflammation, and systemic necrotizing vasculitis, including necrotizing arteritis and hemorrhagic pulmonary capillaritis. To test the pathogenic potential of antibodies alone, purified anti-MPO IgG or control IgG was injected intravenously into Rag2(-/-) mice and wild-type mice. Mice that received anti-MPO IgG but not mice that received control IgG developed focal necrotizing and crescentic glomerulonephritis with a paucity of glomerular Ig deposition. Thus, anti-MPO IgG alone was able to cause pauci-immune glomerular necrosis and crescent formation in the absence of functional T or B lymphocytes in Rag2(-/-) mice and in the presence of an intact immune system in wild-type C57BL/6J mice. This animal model offers strong support for a direct pathogenic role for ANCA IgG in human glomerulonephritis and vasculitis.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos/imunologia , Glomerulonefrite/etiologia , Peroxidase/imunologia , Vasculite/etiologia , Transferência Adotiva , Animais , Linhagem Celular , Proteínas de Ligação a DNA/fisiologia , Feminino , Glomerulonefrite/terapia , Imunização Passiva , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo , Soroalbumina Bovina/imunologia , Vasculite/terapia
20.
Mol Cell Biol ; 24(21): 9470-7, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15485914

RESUMO

In mammalian cells, DNA polymerase beta (Polbeta) functions in base excision repair. We have previously shown that Polbeta-deficient mice exhibit extensive neuronal cell death (apoptosis) in the developing nervous system and that the mice die immediately after birth. Here, we studied potential roles in the phenotype for p53, which has been implicated in DNA damage sensing, cell cycle arrest, and apoptosis. We generated Polbeta(-/-) p53(-/-) double-mutant mice and found that p53 deficiency dramatically rescued neuronal apoptosis associated with Polbeta deficiency, indicating that p53 mediates the apoptotic process in the nervous system. Importantly, proliferation and early differentiation of neuronal progenitors in Polbeta(-/-) p53(-/-) mice appeared normal, but their brains obviously displayed cytoarchitectural abnormalities; moreover, the mice, like Polbeta(-/-) p53(+/+) mice, failed to survive after birth. Thus, we strongly suggest a crucial role for Polbeta in the differentiation of specific neuronal cell types.


Assuntos
Apoptose , Diferenciação Celular , DNA Polimerase beta/deficiência , Neurônios/citologia , Neurônios/metabolismo , Proteína Supressora de Tumor p53/deficiência , Animais , Apoptose/genética , Divisão Celular , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Genótipo , Camundongos , Camundongos Knockout , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Fosfosserina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa