Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Gut ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926079

RESUMO

OBJECTIVE: Food addiction is a multifactorial disorder characterised by a loss of control over food intake that may promote obesity and alter gut microbiota composition. We have investigated the potential involvement of the gut microbiota in the mechanisms underlying food addiction. DESIGN: We used the Yale Food Addiction Scale (YFAS) 2.0 criteria to classify extreme food addiction in mouse and human subpopulations to identify gut microbiota signatures associated with vulnerability to this disorder. RESULTS: Both animal and human cohorts showed important similarities in the gut microbiota signatures linked to food addiction. The signatures suggested possible non-beneficial effects of bacteria belonging to the Proteobacteria phylum and potential protective effects of Actinobacteria against the development of food addiction in both cohorts of humans and mice. A decreased relative abundance of the species Blautia wexlerae was observed in addicted humans and of Blautia genus in addicted mice. Administration of the non-digestible carbohydrates, lactulose and rhamnose, known to favour Blautia growth, led to increased relative abundance of Blautia in mice faeces in parallel with dramatic improvements in food addiction. A similar improvement was revealed after oral administration of Blautia wexlerae as a beneficial microbe. CONCLUSION: By understanding the crosstalk between this behavioural alteration and gut microbiota, these findings constitute a step forward to future treatments for food addiction and related eating disorders.

2.
Pediatr Res ; 95(4): 1117-1123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38086952

RESUMO

BACKGROUND: Insulin might be associated with changes in infant gastrointestinal microbiota. The objective of this randomized controlled trial was to assess the efficacy of two doses of recombinant human(rh) enteral insulin administration compared to placebo in intestinal microbiota. METHODS: 19 preterm patients were recruited at the NICU of La Paz University Hospital (Madrid, Spain). Subjects received 2000 µIU of rh enteral insulin/ml(n = 8), 400 µIU of rh enteral insulin/ml(n = 6) or placebo(n = 5) for 28 days administered once per day. Extracted DNA from fecal samples collected at the beginning and end of treatment were analyzed. The 16S rRNA V4 region was amplified and sequenced in a Miseq(Illumina®) sequencer using 2 × 250 bp paired end. Resulting reads were filtered and analyzed using Qiime2 software. Metabolic activity was assessed by GC. RESULTS: Gestational age and birth weight did not differ between groups. At the phylum level, both insulin treated groups increased the relative abundance of Bacillota, while Pseudomonadota decreased. No change was observed in infants receiving placebo. At the genus level, insulin at both doses showed enriching effects on Clostridium. We found a significant increase in concentrations of fecal propionate in both rh insulin treated groups. CONCLUSION: Rh insulin may modify neonatal intestinal microbiota and SCFAs in preterm infants. IMPACT STATEMENT: Decrease of Pseudomonadota (former Proteobacteria phylum) and increase of Bacillota (former Firmicutes phylum) obtained in this study are the changes observed previously in low-risk infants for NEC. The administration of recombinant enteral insulin may modify the microbiota of preterm new-borns and SCFAs. Modulation of the microbiota may be a mechanism whereby insulin contributes to neonatal intestinal maturation and/or protection.


Assuntos
Enterocolite Necrosante , Microbioma Gastrointestinal , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Insulina , RNA Ribossômico 16S/genética , Intestinos , Enterocolite Necrosante/prevenção & controle
3.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256076

RESUMO

The imbalance of the gut microbiota (GM) is known as dysbiosis and is associated with disorders such as obesity. The increasing prevalence of microorganisms harboring antibiotic resistance genes (ARG) in the GM has been reported as a potential risk for spreading multi-drug-resistant pathogens. The objective of this work was the evaluation, in a fecal culture model, of different probiotics for their ability to modulate GM composition and ARG levels on two population groups, extremely obese (OB) and normal-weight (NW) subjects. Clear differences in the basal microbiota composition were observed between NW and OB donors. The microbial profile assessed by metataxonomics revealed the broader impact of probiotics on the OB microbiota composition. Also, supplementation with probiotics promoted significant reductions in the absolute levels of tetM and tetO genes. Regarding the blaTEM gene, a minor but significant decrease in both donor groups was detected after probiotic addition. A negative association between the abundance of Bifidobacteriaceae and the tetM gene was observed. Our results show the ability of some of the tested strains to modulate GM. Moreover, the results suggest the potential application of probiotics for reducing the levels of ARG, which constitutes an interesting target for the future development of probiotics.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Microbiota/genética , Microbioma Gastrointestinal/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Obesidade
4.
Stroke ; 54(7): 1875-1887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226775

RESUMO

BACKGROUND: Respiratory and urinary tract infections are frequent complications in patients with severe stroke. Stroke-associated infection is mainly due to opportunistic commensal bacteria of the microbiota that may translocate from the gut. We investigated the mechanisms underlying gut dysbiosis and poststroke infection. METHODS: Using a model of transient cerebral ischemia in mice, we explored the relationship between immunometabolic dysregulation, gut barrier dysfunction, gut microbial alterations, and bacterial colonization of organs, and we explored the effect of several drug treatments. RESULTS: Stroke-induced lymphocytopenia and widespread colonization of lung and other organs by opportunistic commensal bacteria. This effect correlated with reduced gut epithelial barrier resistance, and a proinflammatory sway in the gut illustrated by complement and nuclear factor-κB activation, reduced number of gut regulatory T cells, and a shift of gut lymphocytes to γδT cells and T helper 1/T helper 17 phenotypes. Stroke increased conjugated bile acids in the liver but decreased bile acids and short-chain fatty acids in the gut. Gut fermenting anaerobic bacteria decreased while opportunistic facultative anaerobes, notably Enterobacteriaceae, suffered an expansion. Anti-inflammatory treatment with a nuclear factor-κB inhibitor fully abrogated the Enterobacteriaceae overgrowth in the gut microbiota induced by stroke, whereas inhibitors of the neural or humoral arms of the stress response were ineffective at the doses used in this study. Conversely, the anti-inflammatory treatment did not prevent poststroke lung colonization by Enterobacteriaceae. CONCLUSIONS: Stroke perturbs homeostatic neuro-immuno-metabolic networks facilitating a bloom of opportunistic commensals in the gut microbiota. However, this bacterial expansion in the gut does not mediate poststroke infection.


Assuntos
Microbioma Gastrointestinal , Pneumonia , Acidente Vascular Cerebral , Camundongos , Animais , NF-kappa B , Bactérias/genética , Acidente Vascular Cerebral/complicações , Pulmão
5.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050030

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental pathology characterized by the impairment of social interaction, difficulties in communication, and repetitive behaviors. Alterations in the metabolism of amino acids have been reported. We performed a chromatographic analysis of fecal amino acids, ammonium, biogenic amines, and gamma aminobutyric acid (GABA) in Tunisian autistic children from 4 to 10 years, and results were compared with their siblings (SIB) and children from the general population (GP). ASD presented significantly higher levels of fecal amino acids than SIB and GP; differences being more pronounced in younger (4-7 years) than in older (8-10 years) individuals whereas no changes were found for the remaining compounds. Lower levels of histidine were the only difference related with severe symptoms of autism (CARS scale). A linear discriminant analysis (LDA) based on fecal amino acid profiles clearly separated ASD, SIB, and GP at 4 to 7 years but not at more advanced age (8-10 years), evidencing more pronounced alterations in younger children. The relationship of fecal amino acids with autism needs deeper research integrating blood analytical parameters, brain metabolism, and intestinal microbiota. Fecal amino acids could be targeted for designing personalized diets to prevent or minimize cognitive impairments associated with ASD.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Humanos , Criança , Idoso , Aminoácidos/análise , Transtorno do Espectro Autista/metabolismo , Tunísia , Fezes/química
6.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408972

RESUMO

Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurological disorders such as Parkinson's disease, Alzheimer's dementia, ischemic stroke, and head and spinal cord injury. The increased production of reactive oxygen species (ROS) has been associated with mitochondrial dysfunction, altered metal homeostasis, and compromised brain antioxidant defence. All these changes have been reported to directly affect synaptic activity and neurotransmission in neurons, leading to cognitive dysfunction. In this context two non-invasive strategies could be employed in an attempt to improve the aforementioned stressful brain status. In this regard, it has been shown that exercise could increase the resistance against oxidative stress, thus providing enhanced neuroprotection. Indeed, there is evidence suggesting that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. However, the differential effects of different types of exercise (aerobic exhausted exercise, anaerobic exercise, or the combination of both types) and the duration of physical activity will be also addressed in this review as likely determinants of therapeutic efficacy. The second proposed strategy is related to the use of probiotics, which can also reduce some biomarkers of oxidative stress and inflammatory cytokines, although their underlying mechanisms of action remain unclear. Moreover, various probiotics produce neuroactive molecules that directly or indirectly impact signalling in the brain. In this review, we will discuss how physical activity can be incorporated as a component of therapeutic strategies in oxidative stress-based neurological disorders along with the augmentation of probiotics intake.


Assuntos
Exercício Físico , Probióticos , Antioxidantes/farmacologia , Encéfalo , Exercício Físico/fisiologia , Estresse Oxidativo , Probióticos/uso terapêutico
7.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806135

RESUMO

The establishment of the gut microbiota poses implications for short and long-term health. Bifidobacterium is an important taxon in early life, being one of the most abundant genera in the infant intestinal microbiota and carrying out key functions for maintaining host-homeostasis. Recent metagenomic studies have shown that different factors, such as gestational age, delivery mode, or feeding habits, affect the gut microbiota establishment at high phylogenetic levels. However, their impact on the specific bifidobacterial populations is not yet well understood. Here we studied the impact of these factors on the different Bifidobacterium species and subspecies at both the quantitative and qualitative levels. Fecal samples were taken from 85 neonates at 2, 10, 30, 90 days of life, and the relative proportions of the different bifidobacterial populations were assessed by 16S rRNA-23S rRNA internal transcribed spacer (ITS) region sequencing. Absolute levels of the main species were determined by q-PCR. Our results showed that the bifidobacterial population establishment is affected by gestational age, delivery mode, and infant feeding, as it is evidenced by qualitative and quantitative changes. These data underline the need for understanding the impact of perinatal factors on the gut microbiota also at low taxonomic levels, especially in the case of relevant microbial populations such as Bifidobacterium. The data obtained provide indications for the selection of the species best suited for the development of bifidobacteria-based products for different groups of neonates and will help to develop rational strategies for favoring a healthy early microbiota development when this process is challenged.


Assuntos
Bifidobacterium/fisiologia , Microbioma Gastrointestinal , Ciências da Nutrição Infantil , DNA Intergênico/genética , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Temperatura
8.
Curr Issues Mol Biol ; 36: 33-62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31558686

RESUMO

The microbial community inhabiting our intestine, known as 'microbiota', and the ensemble of their genomes (microbiome) regulate important functions of the host, being essential for health maintenance. The recent development of next-generation sequencing (NGS) methods has greatly facilitated the study of the microbiota and has contributed to evidence of the strong influence exerted by age and diet. However, the precise way in which the diet and its components modify the functionality of the intestinal microbiome is far from being completely known. Changes in the intestinal microbiota occur during ageing, frequently accompanied by physiological changes of the digestive tract, modification of dietary patterns and impairment of the immune system. Establishing nutritional strategies aiming to counterbalance the specific alterations taking place in the microbiota during ageing would contribute to improved health status in the elderly. This review will analyse changes appearing in the intestinal microbiota from adulthood to old age and their association with dietary patterns and lifestyle factors.


Assuntos
Envelhecimento , Dieta , Microbioma Gastrointestinal , Adulto , Idoso , Envelhecimento/imunologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/fisiopatologia , Dieta/efeitos adversos , Cromatografia Gasosa-Espectrometria de Massas , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Metabolômica , Microbiota/genética , Microbiota/imunologia , Microbiota/fisiologia
9.
FASEB J ; 33(12): 13546-13559, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545915

RESUMO

The gastrointestinal microbiota is emerging as a unique and inexhaustible source for metabolites with potential to modulate G-protein coupled receptors (GPCRs). The ghrelin receptor [growth hormone secretagogue receptor (GHSR)-1a] is a GPCR expressed throughout both the gut and the brain and plays a crucial role in maintaining energy balance, metabolism, and the central modulation of food intake, motivation, reward, and mood. To date, few studies have investigated the potential of the gastrointestinal microbiota and its metabolites to modulate GPCR signaling. Here we investigate the ability of short-chain fatty acids (SCFAs), lactate, and different bacterial strains, including Bifidobacterium and Lactobacillus genera, to modulate GHSR-1a signaling. We identify, for what is to our knowledge the first time, a potent effect of microbiota-derived metabolites on GHSR-1a signaling with potential significant consequences for host metabolism and physiology. We show that SCFAs, lactate, and bacterial supernatants are able to attenuate ghrelin-mediated signaling through the GHSR-1a. We suggest a novel route of communication between the gut microbiota and the host via modulation of GHSR-1a receptor signaling. Together, this highlights the emerging therapeutic potential in the exploration of the microbiota metabolome in the specific targeting of key GPCRs, with pleiotropic actions that span both the CNS and periphery.-Torres-Fuentes, C., Golubeva, A. V., Zhdanov, A. V., Wallace, S., Arboleya, S., Papkovsky, D. B., El Aidy, S., Ross, P., Roy, B. L., Stanton, C., Dinan, T. G., Cryan, J. F., Schellekens, H. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling.


Assuntos
Bactérias/metabolismo , Ácidos Graxos Voláteis/farmacologia , Microbioma Gastrointestinal , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Láctico/farmacologia , Receptores de Grelina/metabolismo , Grelina/farmacologia , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores de Grelina/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
10.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019174

RESUMO

The gut microbiota remains relatively stable during adulthood; however, certain intrinsic and environmental factors can lead to microbiota dysbiosis. Its restoration towards a healthy condition using best-suited prebiotics requires previous development of in vitro models for evaluating their functionality. Herein, we carried out fecal cultures with microbiota from healthy normal-weight and morbid obese adults. Cultures were supplemented with different inulin-type fructans (1-kestose, Actilight, P95, Synergy1 and Inulin) and a galactooligosaccharide. Their impact on the gut microbiota was assessed by monitoring gas production and evaluating changes in the microbiota composition (qPCR and 16S rRNA gene profiling) and metabolic activity (gas chromatography). Additionally, the effect on the bifidobacterial species was assessed (ITS-sequencing). Moreover, the functionality of the microbiota before and after prebiotic-modulation was determined in an in vitro model of interaction with an intestinal cell line. In general, 1-kestose was the compound showing the largest effects. The modulation with prebiotics led to significant increases in the Bacteroides group and Faecalibacterium in obese subjects, whereas in normal-weight individuals, substantial rises in Bifidobacterium and Faecalibacterium were appreciated. Notably, the results obtained showed differences in the responses among the tested compounds but also among the studied human populations, indicating the need for developing population-specific products.


Assuntos
Bactérias/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Obesidade Mórbida/tratamento farmacológico , Prebióticos/administração & dosagem , Magreza/tratamento farmacológico , Adulto , Bactérias/efeitos dos fármacos , Estudos de Casos e Controles , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Magreza/metabolismo , Magreza/patologia
11.
Cell Mol Life Sci ; 75(1): 83-91, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28988290

RESUMO

The colonization of the neonatal digestive tract provides a microbial stimulus required for an adequate maturation towards the physiological homeostasis of the host. This colonization, which is affected by several factors, begins with facultative anaerobes and continues with anaerobic genera. Accumulating evidence underlines the key role of the early neonatal period for this microbiota-induced maturation, being a key determinant factor for later health. Therefore, understanding the factors that determine the establishment of the microbiota in the infant is of critical importance. Exposure to antibiotics, either prenatally or postnatally, is common in early life mainly due to the use of intrapartum prophylaxis or to the administration of antibiotics in C-section deliveries. However, we are still far from understanding the impact of early antibiotics and their long-term effects. Increased risk of non-communicable diseases, such as allergies or obesity, has been observed in individuals exposed to antibiotics during early infancy. Moreover, the impact of antibiotics on the establishment of the infant gut resistome, and on the role of the microbiota as a reservoir of resistance genes, should be evaluated in the context of the problems associated with the increasing number of antibiotic resistant pathogenic strains. In this article, we review and discuss the above-mentioned issues with the aim of encouraging debate on the actions needed for understanding the impact of early life antibiotics upon human microbiota and health and for developing strategies aimed at minimizing this impact.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Humanos , Interações Microbianas/efeitos dos fármacos , Fatores de Tempo
12.
BMC Genomics ; 19(1): 33, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310579

RESUMO

BACKGROUND: Bifidobacterium longum is a common member of the human gut microbiota and is frequently present at high numbers in the gut microbiota of humans throughout life, thus indicative of a close symbiotic host-microbe relationship. Different mechanisms may be responsible for the high competitiveness of this taxon in its human host to allow stable establishment in the complex and dynamic intestinal microbiota environment. The objective of this study was to assess the genetic and metabolic diversity in a set of 20 B. longum strains, most of which had previously been isolated from infants, by performing whole genome sequencing and comparative analysis, and to analyse their carbohydrate utilization abilities using a gene-trait matching approach. RESULTS: We analysed their pan-genome and their phylogenetic relatedness. All strains clustered in the B. longum ssp. longum phylogenetic subgroup, except for one individual strain which was found to cluster in the B. longum ssp. suis phylogenetic group. The examined strains exhibit genomic diversity, while they also varied in their sugar utilization profiles. This allowed us to perform a gene-trait matching exercise enabling the identification of five gene clusters involved in the utilization of xylo-oligosaccharides, arabinan, arabinoxylan, galactan and fucosyllactose, the latter of which is an abundant human milk oligosaccharide (HMO). CONCLUSIONS: The results showed high diversity in terms of genes and predicted glycosyl-hydrolases, as well as the ability to metabolize a large range of sugars. Moreover, we corroborate the capability of B. longum ssp. longum to metabolise HMOs. Ultimately, their intraspecific genomic diversity and the ability to consume a wide assortment of carbohydrates, ranging from plant-derived carbohydrates to HMOs, may provide an explanation for the competitive advantage and persistence of B. longum in the human gut microbiome.


Assuntos
Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo , Metabolismo dos Carboidratos , Genes Bacterianos , Genoma Bacteriano , Característica Quantitativa Herdável , Biodiversidade , Bases de Dados Genéticas , Microbioma Gastrointestinal , Humanos , Lactente , Recém-Nascido , Filogenia , Probióticos , Locos de Características Quantitativas
13.
Ann Nutr Metab ; 73 Suppl 3: 17-23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30041194

RESUMO

BACKGROUND: The human gut microbiota is assembled during infancy with an increase in diversity and stability. The correct colonization and the establishment of this microbiome are linked to the early and future health status of the individual. It is known that caesarean delivery alters this optimal microbial foundation. C-section (CS) is a common obstetrician surgery; however, it is not without risk for the mother/infant dyad. The World Health Organization recommends not exceeding 10-15% of the total deliveries; nevertheless, this rate has been increasing rapidly worldwide in the last decades. SUMMARY: This review discloses the clinical parameters for correct CS recommendation. Moreover, the major microbial changes in the infant gut microbiome acquisition as a consequence of delivery mode and medical practices surrounding it, as well as, the early and long-lasting effects for both mother and babies are discussed. In addition, some strategies for the gut microbiota restoration are analysed. The aim of this review is to show the need for the development of strategies for minimizing or limiting the impact of caesarean on the microbiome development, favouring future health.


Assuntos
Cesárea , Microbioma Gastrointestinal , Parto Obstétrico , Feminino , Humanos , Recém-Nascido , Gravidez
14.
Int J Mol Sci ; 17(5)2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27136545

RESUMO

BACKGROUND: The microbial colonization of the neonatal gut provides a critical stimulus for normal maturation and development. This process of early microbiota establishment, known to be affected by several factors, constitutes an important determinant for later health. METHODS: We studied the establishment of the microbiota in preterm and full-term infants and the impact of perinatal antibiotics upon this process in premature babies. To this end, 16S rRNA gene sequence-based microbiota assessment was performed at phylum level and functional inference analyses were conducted. Moreover, the levels of the main intestinal microbial metabolites, the short-chain fatty acids (SCFA) acetate, propionate and butyrate, were measured by Gas-Chromatography Flame ionization/Mass spectrometry detection. RESULTS: Prematurity affects microbiota composition at phylum level, leading to increases of Proteobacteria and reduction of other intestinal microorganisms. Perinatal antibiotic use further affected the microbiota of the preterm infant. These changes involved a concomitant alteration in the levels of intestinal SCFA. Moreover, functional inference analyses allowed for identifying metabolic pathways potentially affected by prematurity and perinatal antibiotics use. CONCLUSION: A deficiency or delay in the establishment of normal microbiota function seems to be present in preterm infants. Perinatal antibiotic use, such as intrapartum prophylaxis, affected the early life microbiota establishment in preterm newborns, which may have consequences for later health.


Assuntos
Antibacterianos/farmacologia , Intestinos/microbiologia , Microbiota/efeitos dos fármacos , Acetatos/análise , Aleitamento Materno , Butiratos/análise , Ácidos Graxos Voláteis/análise , Fezes/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Propionatos/análise
15.
J Pediatr ; 166(3): 538-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25444008

RESUMO

OBJECTIVES: To assess the establishment of the intestinal microbiota in very low birthweight preterm infants and to evaluate the impact of perinatal factors, such as delivery mode and perinatal antibiotics. STUDY DESIGN: We used 16S ribosomal RNA gene sequence-based microbiota analysis and quantitative polymerase chain reaction to evaluate the establishment of the intestinal microbiota. We also evaluated factors affecting the microbiota, during the first 3 months of life in preterm infants (n = 27) compared with full-term babies (n = 13). RESULTS: Immaturity affects the microbiota as indicated by a reduced percentage of the family Bacteroidaceae during the first months of life and by a higher initial percentage of Lactobacillaceae in preterm infants compared with full term infants. Perinatal antibiotics, including intrapartum antimicrobial prophylaxis, affects the gut microbiota, as indicated by increased Enterobacteriaceae family organisms in the infants. CONCLUSIONS: Prematurity and perinatal antibiotic administration strongly affect the initial establishment of microbiota with potential consequences for later health.


Assuntos
Antibacterianos/farmacologia , Doenças do Prematuro/genética , Recém-Nascido Prematuro , Intestinos/microbiologia , Microbiota/genética , RNA Ribossômico 16S/genética , Feminino , Humanos , Recém-Nascido , Doenças do Prematuro/microbiologia , Masculino , Microbiota/efeitos dos fármacos , Reação em Cadeia da Polimerase
16.
Nutrients ; 16(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999725

RESUMO

The correct initial colonization and establishment of the gut microbiota during the early stages of life is a key step, with long-lasting consequences throughout the entire lifespan of the individual. This process is affected by several perinatal factors; among them, feeding mode is known to have a critical role. Breastfeeding is the optimal nutrition for neonates; however, it is not always possible, especially in cases of prematurity or early pathology. In such cases, most commonly babies are fed with infant formulas in spite of the official nutritional and health international organizations' recommendation on the use of donated human milk through milk banks for these cases. However, donated human milk still does not totally match maternal milk in terms of infant growth and gut microbiota development. The present review summarizes the practices of milk banks and hospitals regarding donated human milk, its safety and quality, and the health outcomes in infants fed with donated human milk. Additionally, we explore different alternatives to customize pasteurized donated human milk with the aim of finding the perfect match between each baby and banked milk for promoting the establishment of a beneficial gut microbiota from the early stages of life.


Assuntos
Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição do Lactente , Bancos de Leite Humano , Leite Humano , Humanos , Leite Humano/microbiologia , Recém-Nascido , Lactente , Aleitamento Materno , Fórmulas Infantis , Feminino
17.
Psicothema ; 36(2): 133-144, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38661160

RESUMO

BACKGROUND: Exposure to early life stress (ELS) and maternal consumption of a high-fat and high-sugar diet can have detrimental effects on adult emotional responses. The microbiota and gut-brain axis have been proposed as playing a mediating role in the regulation of stress and emotion. METHOD: Young male rats were exposed to maternal separation (MS) together with maternal and postnatal consumption of a HFS diet (45%kcal saturated fat, 17%kcal sucrose). Anxiety-like behaviour was evaluated using an elevated zero-maze, and depression-like behaviour using the forced-swim and sucrose preference tests. Microbiota composition and derived metabolites were also analysed in faecal samples using a gas chromatograph and mass spectrometry. RESULTS: Combined exposure to MS and lifelong consumption of a HFS diet partially reversed the abnormal anxiety-like and depression-like behaviours in early adulthood caused by each adverse factor alone. Diet composition had a greater negative impact than ELS exposure on the gut microbiota, and both environmental factors interacted with microbiota composition partially counteracting their negative effects. CONCLUSIONS: The effects of exposure to early life stress and a HFS diet independently are partially reversed after the combination of both factors. These results suggest that ELS and diet interact to modulate adult stress response and gut microbiota.


Assuntos
Ansiedade , Depressão , Dieta Ocidental , Microbioma Gastrointestinal , Privação Materna , Estresse Psicológico , Animais , Masculino , Dieta Ocidental/efeitos adversos , Ratos , Ansiedade/microbiologia , Depressão/microbiologia , Emoções , Ratos Wistar , Feminino
18.
Appl Environ Microbiol ; 79(23): 7518-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077708

RESUMO

Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics.


Assuntos
Bacteroides/fisiologia , Bifidobacterium/fisiologia , Reatores Biológicos/microbiologia , Metabolismo dos Carboidratos , Carbono/metabolismo , Interações Microbianas , Bacteroides/crescimento & desenvolvimento , Bifidobacterium/crescimento & desenvolvimento , Ácidos Carboxílicos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Viabilidade Microbiana
19.
Br J Nutr ; 110(11): 2030-6, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23721811

RESUMO

The microbial colonisation of the infant gut begins immediately after birth and is essential for the development of the intestine, the immune system and later well-being. Important differences have been reported in the characteristics of such microbiota in different infant population groups. In the present study, we employed an in vitro faecal batch culture model using faeces from different human population groups (adults and full-term breast-fed, full-term formula-fed and preterm infants) to determine the influence that the addition of four bifidobacterial strains and fructo-oligosaccharides (FOS) exerts on the profile of SCFA measured by GC as well as on the levels of some relevant intestinal microbial groups by quantitative PCR during incubation. Differences were found in the levels of SCFA and intestinal microbial groups in the faecal cultures depending on the human group origin of the faecal samples (P< 0·05), this being a predominant factor, compared with bifidobacteria or FOS added, in determining microbiota dynamics. These results exhibit the importance of the initial characteristics of the basal intestinal microbiota in the effect exerted by bifidobacteria or FOS that are added and highlight the need to design probiotics targeting specific human population groups.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Intestinos/microbiologia , Oligossacarídeos/metabolismo , Prebióticos , Probióticos/metabolismo , Adulto , Técnicas de Cultura Celular por Lotes , Bifidobacterium/metabolismo , Aleitamento Materno , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Fermentação , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/metabolismo , Humanos , Fórmulas Infantis , Recém-Nascido , Recém-Nascido Prematuro , Interações Microbianas , Tipagem Molecular , Espanha , Especificidade da Espécie , Nascimento a Termo
20.
Anaerobe ; 19: 9-16, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23154045

RESUMO

Microbial colonization of the infant gut is essential for the development of the intestine and the immune system. The intestinal microbiota of full-term breast-fed infants is considered as the health standard for newborns. A culture medium containing formula milk was designed, which allowed a balanced growth of intestinal microorganisms and was used to perform fecal batch cultures from preterm babies. Sixteen Bifidobacterium strains and fructooligosaccharides (FOS) were tested for their ability to modulate in vitro the intestinal microbiota. The production of short chain fatty acids (SCFA) was measured by Gas Chromatography and the levels of some anaerobe (Bifidobacterium and Bacteroides groups) and facultative anaerobes (Enterobacteriaceae, Enterococcaceae, Weissella group, and Klebsiella pneumoniae) were determined by quantitative PCR. Results were referred to a fecal negative control culture without microorganisms or FOS added. Strains that in fecal cultures counteracted better the aberrancies previously found in feces of preterm babies, as compared with full-term breast-fed infants, were selected. The three Bifidobacterium bifidum strains tested in this work promoted the most suitable shifts in SCFA and in the ratio of variables facultative anaerobes to anaerobes. Two Bifidobacterium breve strains complied with the requirement for facultative anaerobes and anaerobes and one of them also promoted a suitable shift of SCFA. Bifidobacteria behaved similarly as FOS regarding the microbial profiles in fecal cultures but the production of lactic and acetic acid was much lower. B. breve and B. bifidum strains selected represent promising candidates for their assessment in more complex in vitro and in vivo models.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Biota , Fezes/microbiologia , Cromatografia Gasosa , Meios de Cultura/química , Ácidos Graxos/metabolismo , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Oligossacarídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa