Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(33): e2300659, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37072896

RESUMO

Controlling diamond structures with nanometer precision is fundamentally challenging owing to their extreme and far-from-equilibrium synthetic conditions. State-of-the-art techniques, including detonation, chemical vapor deposition, mechanical grinding, and high-pressure-high-temperature synthesis, yield nanodiamond particles with a broad distribution of sizes. Despite many efforts, the direct synthesis of nanodiamonds with precisely controlled diameters remains elusive. Here the geochemistry-inspired synthesis of sub-5 nm nanodiamonds with sub-nanometer size deviation is described. High-pressure-high-temperature treatment of uniform iron carbide nanoparticles embedded in iron oxide matrices yields nanodiamonds with tunable diameters down to 2.13 and 0.22 nm standard deviation. A self-limiting, redox-driven, and diffusion-controlled solid-state reaction mechanism is proposed and supported by in situ X-ray diffraction, ex situ characterizations, and computational modeling. This work provides a unique mechanism for the precise control of nanostructured diamonds under extreme conditions and paves the road for the full realization of their potential in emerging technologies.

2.
J Phys Chem Lett ; 14(2): 508-515, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36626164

RESUMO

Metallophilicity has been widely studied as a fundamental supramolecular interaction. However, the extent and directionality thereof remain controversial. A major obstacle lies in the difficulty to separately control the geometry and chemical composition. Herein, we address this challenge by modulating metallophilicity with mechanical pressure. Using a multinuclear Cu(I) complex as model system, we report anomalous anisotropies of (supra)molecular structures, vibrations, and interaction energies upon isotropic compression as well as concomitant (essentially turn-on) piezochromic luminescence enhancement with ∼103 modulation. The in situ characterizations indicate opposite behaviors of contact distances and cuprophilic interactions for intermolecular vs intramolecular Cu-Cu pairs under pressure. Theoretical calculations break down the attractive and repulsive forces associated with cuprophilicity, its spontaneous 4p-3d hybridization origin, and direction-dependent interaction strength. The use of isotropic mechanical force reveals the intrinsic anisotropy of metallophilicity in multinuclear systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa