Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 30(2): 601-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26443820

RESUMO

Endothelial activation is a hallmark of the high-glucose (HG)-induced retinal inflammation associated with diabetic retinopathy (DR). However, precisely how HG induces retinal endothelial activation is not fully understood. We hypothesized that HG-induced up-regulation of lysyl oxidase (LOX), a collagen-cross-linking enzyme, in retinal capillary endothelial cells (ECs) enhances subendothelial basement membrane (BM) stiffness, which, in turn, promotes retinal EC activation. Diabetic C57BL/6 mice exhibiting a 70 and 50% increase in retinal intercellular adhesion molecule (ICAM)-1 expression and leukocyte accumulation, respectively, demonstrated a 2-fold increase in the levels of BM collagen IV and LOX, key determinants of capillary BM stiffness. Using atomic force microscopy, we confirmed that HG significantly enhances LOX-dependent subendothelial matrix stiffness in vitro, which correlated with an ∼2.5-fold increase in endothelial ICAM-1 expression, a 4-fold greater monocyte-EC adhesion, and an ∼2-fold alteration in endothelial NO (decrease) and NF-κB activation (increase). Inhibition of LOX-dependent subendothelial matrix stiffening alone suppressed HG-induced retinal EC activation. Finally, using synthetic matrices of tunable stiffness, we demonstrated that subendothelial matrix stiffening is necessary and sufficient to promote EC activation. These findings implicate BM stiffening as a critical determinant of HG-induced retinal EC activation and provide a rationale for examining BM stiffness and underlying mechanotransduction pathways as therapeutic targets for diabetic retinopathy.


Assuntos
Membrana Basal/patologia , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/induzido quimicamente , Endotélio/patologia , Retina/patologia , Animais , Linhagem Celular , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/fisiologia , Haplorrinos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo
2.
Integr Biol (Camb) ; 8(8): 869-78, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27444067

RESUMO

Leukocyte-endothelial adhesion is a critical early step in chronic vascular inflammation associated with diabetes, emphysema, and aging. Importantly, these conditions are also marked by abnormal subendothelial matrix crosslinking (stiffness). Yet, whether and how abnormal matrix stiffness contributes to leukocyte-endothelial adhesion remains poorly understood. Using a co-culture of human monocytic cells and human microvascular endothelial cells (ECs) grown on matrices of tunable stiffness, we demonstrate that matrix stiffness exerts biphasic control over monocyte-EC adhesion, with both matrix softening and stiffening eliciting a two-fold increase in this adhesive interaction. This preferential endothelial adhesivity on softer and stiffer matrices was consistent with a significant increase in α-actinin-4-associated endothelial ICAM-1 clustering, a key determinant of monocyte-EC adhesion. Further, the enhanced ICAM-1 clustering on soft and stiff matrices correlated strongly with an increase in Rho activity and ROCK2 expression. Importantly, inhibition of Rho/ROCK activity blocked the effects of abnormal matrix stiffness on ICAM-1 clustering and monocyte-EC adhesion. Thus, these findings implicate matrix stiffness-dependent ICAM-1 clustering as an important regulator of vascular inflammation and provide the rationale for closely examining mechanotransduction pathways as new molecular targets for anti-inflammatory therapy.


Assuntos
Células Endoteliais/citologia , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/citologia , Quinases Associadas a rho/metabolismo , Resinas Acrílicas/química , Actinina/metabolismo , Adesão Celular , Análise por Conglomerados , Técnicas de Cocultura , Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Leucócitos/citologia , Mecanotransdução Celular , Microcirculação , Pressão , Transdução de Sinais , Células U937
3.
Sci Rep ; 5: 16258, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26584637

RESUMO

Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.


Assuntos
Anti-Inflamatórios/farmacologia , Células Endoteliais/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Nitroglicerina/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Feminino , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Lipossomos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/química , Nanopartículas/ultraestrutura , Óxido Nítrico/metabolismo , Nitroglicerina/administração & dosagem , Nitroglicerina/química , Gravidez , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiologia , Ovinos , Superóxidos/metabolismo , Células U937 , Vasodilatação/efeitos dos fármacos
4.
Invest Ophthalmol Vis Sci ; 55(5): 3140-7, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24713480

RESUMO

PURPOSE: Environmental tobacco smoke (ETS) is widely regarded as a major modifiable risk factor for age-related macular degeneration (AMD). Yet, precisely how it exerts its pathologic effects is poorly understood. Since early-stage AMD is characterized by choroidal capillary loss, this study examined the effect of sidestream smoke (SS), the major component of ETS, on the viability of choroidal endothelial cells (EC), with an emphasis on the role of aberrant cell and basement membrane (BM) architecture in mediating SS-induced response. METHODS: Chorioretinal ECs (RF/6A) were treated with SS, and cell viability and architecture were analyzed by colorimetric assay and actin cytoskeletal organization, respectively. The structure of RF/6A EC-secreted BM was examined by immunofluorescence for collagen IV and immunoblotting for lysyl oxidase (LOX), a collagen-crosslinking enzyme. Finally, fresh RF/6A ECs were cultured on decellularized SS-treated BM to evaluate its active role in EC dysfunction. RESULTS: The RF/6A EC viability decreased progressively with increasing SS dose, which correlated strongly with a significant decline in actin cytoskeleton-dependent EC spreading. Sidestream smoke also caused marked disruption of the RF/6A EC-secreted BM that was accompanied by suppression of LOX expression. Further, fresh, non-SS-treated RF/6A ECs exhibited a significant loss in viability and actin cytoskeletal organization when cultured on SS-treated corrupt BM. CONCLUSIONS: These findings indicate that aberrant physical cues in the form of EC and BM architecture likely have an important role in choriocapillaris dysfunction seen in SS-associated early AMD and implicate choroidal BM as a potential target for AMD management strategies.


Assuntos
Membrana Basal/efeitos dos fármacos , Corioide/citologia , Células Endoteliais/efeitos dos fármacos , Retina/citologia , Fumaça/efeitos adversos , Actinas/ultraestrutura , Análise de Variância , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Corioide/efeitos dos fármacos , Doenças da Coroide/induzido quimicamente , Doenças da Coroide/patologia , Citoesqueleto/ultraestrutura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Proteína-Lisina 6-Oxidase/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos
5.
BMC Syst Biol ; 5: 130, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21846360

RESUMO

BACKGROUND: Solventogenic clostridia offer a sustainable alternative to petroleum-based production of butanol--an important chemical feedstock and potential fuel additive or replacement. C. beijerinckii is an attractive microorganism for strain design to improve butanol production because it (i) naturally produces the highest recorded butanol concentrations as a byproduct of fermentation; and (ii) can co-ferment pentose and hexose sugars (the primary products from lignocellulosic hydrolysis). Interrogating C. beijerinckii metabolism from a systems viewpoint using constraint-based modeling allows for simulation of the global effect of genetic modifications. RESULTS: We present the first genome-scale metabolic model (iCM925) for C. beijerinckii, containing 925 genes, 938 reactions, and 881 metabolites. To build the model we employed a semi-automated procedure that integrated genome annotation information from KEGG, BioCyc, and The SEED, and utilized computational algorithms with manual curation to improve model completeness. Interestingly, we found only a 34% overlap in reactions collected from the three databases--highlighting the importance of evaluating the predictive accuracy of the resulting genome-scale model. To validate iCM925, we conducted fermentation experiments using the NCIMB 8052 strain, and evaluated the ability of the model to simulate measured substrate uptake and product production rates. Experimentally observed fermentation profiles were found to lie within the solution space of the model; however, under an optimal growth objective, additional constraints were needed to reproduce the observed profiles--suggesting the existence of selective pressures other than optimal growth. Notably, a significantly enriched fraction of actively utilized reactions in simulations--constrained to reflect experimental rates--originated from the set of reactions that overlapped between all three databases (P = 3.52 × 10-9, Fisher's exact test). Inhibition of the hydrogenase reaction was found to have a strong effect on butanol formation--as experimentally observed. CONCLUSIONS: Microbial production of butanol by C. beijerinckii offers a promising, sustainable, method for generation of this important chemical and potential biofuel. iCM925 is a predictive model that can accurately reproduce physiological behavior and provide insight into the underlying mechanisms of microbial butanol production. As such, the model will be instrumental in efforts to better understand, and metabolically engineer, this microorganism for improved butanol production.


Assuntos
Reatores Biológicos , Clostridium beijerinckii/metabolismo , Genoma Bacteriano/genética , Microbiologia Industrial/métodos , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Biologia de Sistemas/métodos , Butanóis/metabolismo , Clostridium beijerinckii/genética , Simulação por Computador , Fermentação , Hexoses/metabolismo , Pentoses/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa