Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
New Phytol ; 235(6): 2365-2377, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901264

RESUMO

Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade.


Assuntos
Fabaceae , Rhizobium , Ecossistema , Fabaceae/genética , Nitrogênio , Fixação de Nitrogênio , Nodulação/genética , Nódulos Radiculares de Plantas , Simbiose
2.
BMC Genomics ; 21(1): 214, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143559

RESUMO

BACKGROUND: Cupriavidus strain STM 6070 was isolated from nickel-rich soil collected near Koniambo massif, New Caledonia, using the invasive legume trap host Mimosa pudica. STM 6070 is a heavy metal-tolerant strain that is highly effective at fixing nitrogen with M. pudica. Here we have provided an updated taxonomy for STM 6070 and described salient features of the annotated genome, focusing on heavy metal resistance (HMR) loci and heavy metal efflux (HME) systems. RESULTS: The 6,771,773 bp high-quality-draft genome consists of 107 scaffolds containing 6118 protein-coding genes. ANI values show that STM 6070 is a new species of Cupriavidus. The STM 6070 symbiotic region was syntenic with that of the M. pudica-nodulating Cupriavidus taiwanensis LMG 19424T. In contrast to the nickel and zinc sensitivity of C. taiwanensis strains, STM 6070 grew at high Ni2+ and Zn2+ concentrations. The STM 6070 genome contains 55 genes, located in 12 clusters, that encode HMR structural proteins belonging to the RND, MFS, CHR, ARC3, CDF and P-ATPase protein superfamilies. These HMR molecular determinants are putatively involved in arsenic (ars), chromium (chr), cobalt-zinc-cadmium (czc), copper (cop, cup), nickel (nie and nre), and silver and/or copper (sil) resistance. Seven of these HMR clusters were common to symbiotic and non-symbiotic Cupriavidus species, while four clusters were specific to STM 6070, with three of these being associated with insertion sequences. Within the specific STM 6070 HMR clusters, three novel HME-RND systems (nieIC cep nieBA, czcC2B2A2, and hmxB zneAC zneR hmxS) were identified, which constitute new candidate genes for nickel and zinc resistance. CONCLUSIONS: STM 6070 belongs to a new Cupriavidus species, for which we have proposed the name Cupriavidus neocaledonicus sp. nov.. STM6070 harbours a pSym with a high degree of gene conservation to the pSyms of M. pudica-nodulating C. taiwanensis strains, probably as a result of recent horizontal transfer. The presence of specific HMR clusters, associated with transposase genes, suggests that the selection pressure of the New Caledonian ultramafic soils has driven the specific adaptation of STM 6070 to heavy-metal-rich soils via horizontal gene transfer.


Assuntos
Cupriavidus/efeitos dos fármacos , Cupriavidus/genética , Metais Pesados/toxicidade , Mimosa/microbiologia , Cádmio/metabolismo , Família Multigênica , Níquel/toxicidade , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/efeitos dos fármacos , Rhizobium/genética , Solo , Microbiologia do Solo , Simbiose , Sintenia/genética , Zinco/toxicidade
3.
Int J Syst Evol Microbiol ; 69(7): 1852-1863, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31140963

RESUMO

Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.


Assuntos
Agrobacterium/classificação , Rhizobium/classificação , Terminologia como Assunto , Guias como Assunto
4.
Mol Microbiol ; 103(5): 829-844, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27935141

RESUMO

Most Ensifer strains are comparatively acid sensitive, compromising their persistence in low pH soils. In the acid-tolerant strain Ensifer medicae WSM419, the acid-activated expression of lpiA is essential for enhancing survival in lethal acidic conditions. Here we characterise a multi-step phosphorelay signal transduction pathway consisting of TcsA, TcrA, FsrR, RpoN and its cognate enhancer-binding protein EbpA, which is required for the induction of lpiA and the downstream acvB gene. The fsrR, tcrA, tcsA and rpoN genes were constitutively expressed, whereas lpiA and acvB were strongly acid-induced. RACE mapping revealed that lpiA/acvB were co-transcribed as an operon from an RpoN promoter. In most Ensifer species, lpiA/acvB is located on the chromosome and the sequence upstream of lpiA lacks an RpoN-binding site. Nearly all Ensifer meliloti strains completely lack ebpA, tcrA, tcsA and fsrR regulatory loci. In contrast, E. medicae strains have lpiA/acvB and ebpA/tcrA/tcsA/fsrR co-located on the pSymA megaplasmid, with lpiA/acvB expression coupled to an RpoN promoter. Here we provide a model for the expression of lpiA/acvB in E. medicae. This unique acid-activated regulatory system provides insights into an evolutionary process which may assist the adaptation of E. medicae to acidic environmental niches.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Sinorhizobium/genética , Sinorhizobium/metabolismo , Ácidos , Animais , Sítios de Ligação , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Genes Bacterianos , Fixação de Nitrogênio , Regiões Promotoras Genéticas , Fator sigma/genética , Transdução de Sinais
5.
Int J Syst Evol Microbiol ; 68(9): 2727-2748, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30024371

RESUMO

The genus Methylobacterium, when first proposed by Patt et al. in 1976, was a monospecific genus created to accommodate a single pink pigmented facultatively methylotrophic bacterium. The genus now has over 50 validly published species, however, the percentage 16S rRNA sequence divergence within Methylobacterium questions whether or not they can still be accommodated within one genus. Additionally, several strains are described as belonging to Methylobacterium, but nodulate legumes and in some cases are unable to utilize methanol as a sole carbon source. This study reviews and discusses the current taxonomic status of Methylobacterium. Based on 16S rRNA gene, multi-locus sequence analysis, genomic and phenotypic data, the 52 Methylobacterium species can no longer be retained in one genus. Consequently, a new genus, Methylorubrum gen. nov., is proposed to accommodate 11 species previously held in Methylobacterium. The reclassified species names are proposed as: Methylorubrum aminovorans comb. nov. (type strain TH-15T=NCIMB 13343T=DSM 8832T), Methylorubrum extorquens comb. nov. (type strain NCIMB 9399T=DSM 1337T), Methylorubrum podarium comb. nov. (type strain FM4T=NCIMB 14856T=DSM 15083T), Methylorubrum populi comb. nov. (type strain BJ001T=NCIMB 13946T=ATCC BAA-705T), Methylorubrum pseudosasae comb. nov. (type strain BL44T=ICMP 17622T=NBRC 105205T), Methylorubrum rhodesianum comb. nov. (type strain NCIMB 12249T=DSM 5687T), Methylorubrum rhodinum comb. nov. (type strain NCIMB 9421T=DSM 2163T), Methylorubrum salsuginis comb. nov. (type strain MRT=NCIMB 14847T=NCCB 100140T), Methylorubrum suomiense comb. nov. (type strain F20T=NCIMB 13778T=DSM 14458T), Methylorubrum thiocyanatum comb. nov. (type strain ALL/SCN-PT=NCIMB 13651T=DSM 11490T) and Methylorubrum zatmanii comb. nov. (type strain NCIMB 12243T=DSM 5688T). The taxonomic position of several remaining species is also discussed.


Assuntos
Methylobacterium/classificação , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
New Phytol ; 215(1): 40-56, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28211601

RESUMO

Contents 40 I. 40 II. 41 III. 44 IV. 48 V. 49 VI. 49 VII. 52 VIII. 53 53 References 53 SUMMARY: In the last decade, analyses of both molecular and morphological characters, including nodulation, have led to major changes in our understanding of legume taxonomy. In parallel there has been an explosion in the number of genera and species of rhizobia known to nodulate legumes. No attempt has been made to link these two sets of data or to consider them in a biogeographical context. This review aims to do this by relating the data to the evolution of the two partners: it highlights both longitudinal and latitudinal trends and considers these in relation to the location of major land masses over geological time. Australia is identified as being a special case and latitudes north of the equator as being pivotal in the evolution of highly specialized systems in which the differentiated rhizobia effectively become ammonia factories. However, there are still many gaps to be filled before legume nodulation is sufficiently understood to be managed for the benefit of a world in which climate change is rife.


Assuntos
Fabaceae/fisiologia , Fixação de Nitrogênio , Biodiversidade , Evolução Biológica , Fabaceae/classificação , Fabaceae/microbiologia , Filogeografia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose
7.
Mol Phylogenet Evol ; 109: 191-202, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28089794

RESUMO

The papilionoid legume tribe Brongniartieae comprises a collection of 15 genera with disparate morphologies that were previously positioned in at least four remotely related tribes. The Brongniartieae displays a wide geographical disjunction between Australia and the New World and previous phylogenetic studies had provided conflicting results about the relationships between the American and Australian genera. We carry out phylogenetic analyses of (1) a plastid matK dataset extensively sampled across legumes to solve the enigmatic relationship of the Cuban-endemic monospecific genus Behaimia; and (2) multilocus datasets with focus on all genera ever referred to Brongniartieae. These analyses resulted in a well-resolved and strongly-supported phylogenetic tree of the Brongniartieae. The monophyly of all American genera of Brongniartieae is strongly supported. The doubtful position of the Australian genus Plagiocarpus is resolved within a clade comprising all Australian genera. Behaimia has been traditionally classified in tribe Millettieae, but our new molecular data and re-assessment of morphological traits have resolved the genus within the early-branching papilionoid tribe Brongniartieae. Characters including the pinnately multifoliolate (vs. unifoliolate) leaves, a sessile (vs. stipitate) ovary, and an indehiscent or late dehiscent one-seeded pod distinguish Behaimia from its closer relatives, the South American genera Cyclolobium and Limadendron.


Assuntos
Fabaceae/classificação , Filogenia , Teorema de Bayes , Núcleo Celular/genética , Cuba , Plastídeos/genética
8.
Int J Syst Evol Microbiol ; 65(12): 4716-4723, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26410793

RESUMO

Seven strains, ICMP 19430T, ICMP 19429, ICMP 19431, WSM4637, WSM4638, WSM4639 and WSM4640, were isolated from nitrogen-fixing nodules on roots of the invasive South African legume Dipogon lignosus (subfamily Papilionoideae, tribe Phaseoleae) in New Zealand and Western Australia, and their taxonomic positions were investigated by using a polyphasic approach. All seven strains grew at 10-37 °C (optimum, 25-30 °C), at pH 4.0-9.0 (optimum, pH 6.0-7.0) and with 0-2 % (w/v) NaCl (optimum growth in the absence of NaCl). On the basis of 16S rRNA gene sequence analysis, the strains showed 99.0-99.5 % sequence similarity to the closest type strain, Burkholderia phytofirmans PsJNT, and 98.4-99.7 % sequence similarity to Burkholderia caledonica LMG 19076T. The predominant fatty acids were C18 : 1ω7c (21.0 % of the total fatty acids in strain ICMP 19430T), C16 : 0 (19.1 %), C17 : 0 cyclo (18.9 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 10.7 %) and C19 : 0 cyclov ω8c (7.5 %). The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. The major isoprenoid quinone was Q-8 and the DNA G+C content of strain ICMP 19430T was 63.2 mol%. The DNA­DNA relatedness of the novel strains with respect to the closest neighbouring members of the genus Burkholderia was 55 % or less. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data,these strains represent a novel symbiotic species in the genus Burkholderia, for which the name Burkholderia dipogonis sp. nov. is proposed, with the type strain ICMP 19430T (=LMG28415T=HAMBI 3637T).


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Raízes de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Espécies Introduzidas , Dados de Sequência Molecular , Nova Zelândia , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Austrália Ocidental
9.
Appl Microbiol Biotechnol ; 99(13): 5547-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25776061

RESUMO

Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS.


Assuntos
Bactérias/química , Bactérias/classificação , Biodiversidade , Proteínas Ribossômicas/análise , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias/genética , Proteínas de Bactérias/genética , Biomarcadores/análise , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Int J Syst Evol Microbiol ; 64(Pt 4): 1090-1095, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24368690

RESUMO

Three strains of Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene sequence phylogeny, they were shown to belong to the genus Burkholderia, with the representative strain WSM3556(T) being most closely related to Burkholderia caledonica LMG 23644(T) (98.70 % 16S rRNA gene sequence similarity) and Burkholderia rhynchosiae WSM3937(T) (98.50 %). Additionally, these strains formed a distinct group in phylogenetic trees of the housekeeping genes gyrB and recA. Chemotaxonomic data, including fatty acid profiles and analysis of respiratory quinones, supported the assignment of our strains to the genus Burkholderia. Results of DNA-DNA hybridizations, MALDI-TOF MS analysis and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from their nearest neighbour species. Therefore, these strains represent a novel species, for which the name Burkholderia dilworthii sp. nov. is proposed, with the type strain WSM3556(T) ( = LMG 27173(T) = HAMBI 3353(T)).


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Ubiquinona/química
11.
Int J Syst Evol Microbiol ; 64(Pt 10): 3395-3401, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25013231

RESUMO

Root-nodule bacteria were isolated from Inga laurina (Sw.) Willd. growing in the Cerrado Amazon region, State of Roraima, Brazil. The 16S rRNA gene sequences of six strains (BR 10250(T), BR 10248, BR 10249, BR 10251, BR 10252 and BR 10253) showed low similarities with currently described species of the genus Bradyrhizobium. Phylogenetic analyses of sequences of five housekeeping genes (dnaK, glnII, gyrB, recA and rpoB) revealed Bradyrhizobium iriomotense EK05(T) to be the closest type strain (97.4% sequence similarity or less). Chemotaxonomic data, including fatty acid profiles [with the major components C16:0 and summed feature 8 (C18:1ω6c/C18:1ω7c)], the slow growth rate and carbon compound utilization patterns supported the assignment of our strains to the genus Bradyrhizobium. Results from DNA-DNA hybridizations and physiological traits differentiated our strains from the closest related species of the genus Bradyrhizobium with validly published names. Sequences of symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nifH) grouped together with those of B. iriomotense EK05(T) and Bradyrhizobium sp. strains BR 6610 (used as a commercial inoculant for Inga marginata in Brazil) and TUXTLAS-10 (previously observed in Central America). Based on these data, the six strains represent a novel species, for which the name Bradyrhizobium ingae sp. nov. is proposed. The type strain is BR 10250(T) ( = HAMBI 3600(T)).


Assuntos
Bradyrhizobium/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
12.
Int J Syst Evol Microbiol ; 64(Pt 12): 3950-3957, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205796

RESUMO

Root nodule bacteria were isolated from Centrolobium paraense Tul. grown in soils from the Amazon region, State of Roraima (Brazil). 16S rRNA gene sequence analysis of seven strains (BR 10247(T), BR 10296, BR 10297, BR 10298, BR 10299, BR 10300 and BR 10301) placed them in the genus Bradyrhizobium with the closest neighbours being the type strains of Bradyrhizobium paxllaeri (98.8 % similarity), Bradyrhizobium icense (98.8 %), Bradyrhizobium lablabi (98.7 %), Bradyrhizobium jicamae (98.6 %), Bradyrhizobium elkanii (98.6 %), Bradyrhizobium pachyrhizi (98.6 %) and Bradyrhizobium retamae (98.3 %). This high similarity, however, was not confirmed by the intergenic transcribed spacer (ITS) 16S-23S rRNA region sequence analysis nor by multi-locus sequence analysis. Phylogenetic analyses of five housekeeping genes (dnaK, glnII, gyrB, recA and rpoB) revealed Bradyrhizobium iriomotense EK05(T) ( = LMG 24129(T)) to be the most closely related type strain (95.7 % sequence similarity or less). Chemotaxonomic data, including fatty acid profiles [major components being C16 : 0 and summed feature 8 (18 : 1ω6c/18 : 1ω7c)], DNA G+C content, slow growth rate and carbon compound utilization patterns, supported the placement of the novel strains in the genus Bradyrhizobium. Results of DNA-DNA relatedness studies and physiological data (especially carbon source utilization) differentiated the strains from the closest recognized species of the genus Bradyrhizobium. Symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nifH) placed the novel species in a new branch within the genus Bradyrhizobium. Based on the current data, these seven strains represent a novel species for which the name Bradyrhizobium neotropicale sp. nov. is proposed. The type strain is BR 10247(T) ( = HAMBI 3599(T)).


Assuntos
Bradyrhizobium/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de DNA , Simbiose
13.
Int J Syst Evol Microbiol ; 64(Pt 7): 2358-2363, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24744018

RESUMO

Root nodule bacteria were trapped within cowpea (Vigna unguiculata) in soils with different cultivation histories collected from the Amazonian rainforest in northern Brazil. Analysis of the 16S rRNA gene sequences of six strains (BR 3351(T), BR 3307, BR 3310, BR 3315, BR 3323 BR and BR 3361) isolated from cowpea nodules showed that they formed a distinct group within the genus Bradyrhizobium, which was separate from previously identified type strains. Phylogenetic analyses of three housekeeping genes (glnII, recA and rpoB) revealed that Bradyrhizobium huanghuaihaiense CCBAU 23303(T) was the most closely related type strain (96% sequence similarity or lower). Chemotaxonomic data, including fatty acid profiles (predominant fatty acids being C16 : 0 and summed feature 8), the slow growth rate and carbon compound utilization patterns supported the assignment of the strains to the genus Bradyrhizobium. The results of DNA-DNA hybridizations, antibiotic resistance and physiological tests differentiated these novel strains from the most closely related species of the genus Bradyrhizobium with validly published names. Symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nifH) grouped the novel strains of the genus Bradyrhizobium together with Bradyrhizobium iriomotense strain EK05(T), with 94% and 96% sequence similarity, respectively. Based on these data, these six strains represent a novel species for which the name Brabyrhizobium manausense sp. nov. (BR 3351(T) = HAMBI 3596(T)), is proposed.


Assuntos
Bradyrhizobium/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
14.
Ann Bot ; 112(1): 1-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712451

RESUMO

BACKGROUND AND AIMS: The legume clade Lotononis sensu lato (s.l.; tribe Crotalarieae) comprises three genera: Listia, Leobordea and Lotononis sensu stricto (s.s.). Listia species are symbiotically specific and form lupinoid nodules with rhizobial species of Methylobacterium and Microvirga. This work investigated whether these symbiotic traits were confined to Listia by determining the ability of rhizobial strains isolated from species of Lotononis s.l. to nodulate Listia, Leobordea and Lotononis s.s. hosts and by examining the morphology and structure of the resulting nodules. METHODS: Rhizobia were characterized by sequencing their 16S rRNA and nodA genes. Nodulation and N2 fixation on eight taxonomically diverse Lotononis s.l. species were determined in glasshouse trials. Nodules of all hosts, and the process of infection and nodule initiation in Listia angolensis and Listia bainesii, were examined by light microscopy. KEY RESULTS: Rhizobia associated with Lotononis s.l. were phylogenetically diverse. Leobordea and Lotononis s.s. isolates were most closely related to Bradyrhizobium spp., Ensifer meliloti, Mesorhizobium tianshanense and Methylobacterium nodulans. Listia angolensis formed effective nodules only with species of Microvirga. Listia bainesii nodulated only with pigmented Methylobacterium. Five lineages of nodA were found. Listia angolensis and L. bainesii formed lupinoid nodules, whereas nodules of Leobordea and Lotononis s.s. species were indeterminate. All effective nodules contained uniformly infected central tissue. Listia angolensis and L. bainesii nodule initials occurred on the border of the hypocotyl and along the tap root, and nodule primordia developed in the outer cortical layer. Neither root hair curling nor infection threads were seen. CONCLUSIONS: Two specificity groups occur within Lotononis s.l.: Listia species are symbiotically specific, while species of Leobordea and Lotononis s.s. are generally promiscuous and interact with rhizobia of diverse chromosomal and symbiotic lineages. The seasonally waterlogged habitat of Listia species may favour the development of symbiotic specificity.


Assuntos
Fabaceae/microbiologia , Rhizobium/fisiologia , Simbiose/fisiologia , África Austral , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Genes Bacterianos , Methylobacteriaceae/genética , Methylobacteriaceae/fisiologia , Methylobacterium/genética , Methylobacterium/fisiologia , Fixação de Nitrogênio/genética , Filogenia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
15.
Int J Syst Evol Microbiol ; 63(Pt 11): 3944-3949, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23710046

RESUMO

Two strains of Gram-stain-negative, rod-shaped bacteria were isolated from root nodules of the South African legume Rhynchosia ferulifolia and authenticated on this host. Based on phylogenetic analysis of the 16S rRNA gene, strains WSM3930 and WSM3937(T) belonged to the genus Burkholderia, with the highest degree of sequence similarity to Burkholderia terricola (98.84 %). Additionally, the housekeeping genes gyrB and recA were analysed since 16S rRNA gene sequences are highly similar between closely related species of the genus Burkholderia. The results obtained for both housekeeping genes, gyrB and recA, showed the highest degree of sequence similarity of the novel strains towards Burkholderia caledonica LMG 19076(T) (94.2 % and 94.5 %, respectively). Chemotaxonomic data, including fatty acid profiles and respiratory quinone data supported the assignment of strains WSM3930 and WSM3937(T) to the genus Burkholderia. DNA-DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains WSM3930 and WSM3937(T) from the most closely related species of the genus Burkholderia with validly published names. We conclude, therefore, that these strains represent a novel species for which the name Burkholderia rhynchosiae sp. nov. is proposed, with strain WSM3937(T) ( = LMG 27174(T) = HAMBI 3354(T)) as the type strain.


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Ubiquinona/química
16.
Int J Syst Evol Microbiol ; 63(Pt 11): 3950-3957, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23710047

RESUMO

Seven Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Burkholderia, with the representative strain WSM5005(T) being most closely related to Burkholderia tuberum (98.08 % sequence similarity). Additionally, these strains formed a distinct group in phylogenetic trees based on the housekeeping genes gyrB and recA. Chemotaxonomic data including fatty acid profiles and analysis of respiratory quinones supported the assignment of the strains to the genus Burkholderia. Results of DNA-DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from the closest species of the genus Burkholderia with a validly published name. Therefore, these strains represent a novel species for which the name Burkholderia sprentiae sp. nov. (type strain WSM5005(T) = LMG 27175(T) = HAMBI 3357(T)) is proposed.


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genótipo , Funções Verossimilhança , Dados de Sequência Molecular , Hibridização de Ácido Nucleico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Ubiquinona/química
17.
Microbiol Resour Announc ; 12(3): e0127522, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36779714

RESUMO

Pseudomonas syringae MUP20 was isolated from Western Australian frost-damaged wheat. The MUP20 complete genome contained a 6,045,198-bp single circular chromosome with a GC content of 59.03%. IMG/M genome annotation identified 5,245 protein-coding genes, 1 of which encoded an ice nucleation protein containing 20 occurrences of a highly repetitive PF00818 domain.

18.
Microbiol Resour Announc ; 12(3): e0127622, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36779743

RESUMO

The genome of Pseudomonas syringae MUP32, which was isolated from frost-damaged pea in New South Wales, Australia, is tripartite and contains a circular chromosome (6,032,644 bp) and two plasmids (61,675 and 54,993 bp). IMG/M genome annotation identified 5,370 protein-coding genes, one of which encoded an ice-nucleation protein with 19 repetitive PF00818 domains.

19.
Microbiol Resour Announc ; 12(3): e0121522, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36779745

RESUMO

Pseudomonas syringae MUP17 was isolated from Western Australian frost-damaged barley. The MUP17 complete genome contained a 5,850,185-bp single circular chromosome with a GC content of 59.12%. IMG/M genome annotation identified 5,012 protein-coding genes, 1 of which encoded an ice-nucleation protein containing 19 occurrences of a highly repetitive PF00818 domain.

20.
Front Microbiol ; 14: 1082107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925474

RESUMO

Integrated virus genomes (prophages) are commonly found in sequenced bacterial genomes but have rarely been described in detail for rhizobial genomes. Cupriavidus taiwanensis STM 6018 is a rhizobial Betaproteobacteria strain that was isolated in 2006 from a root nodule of a Mimosa pudica host in French Guiana, South America. Here we describe features of the genome of STM 6018, focusing on the characterization of two different types of prophages that have been identified in its genome. The draft genome of STM 6018 is 6,553,639 bp, and consists of 80 scaffolds, containing 5,864 protein-coding genes and 61 RNA genes. STM 6018 contains all the nodulation and nitrogen fixation gene clusters common to symbiotic Cupriavidus species; sharing >99.97% bp identity homology to the nod/nif/noeM gene clusters from C. taiwanensis LMG19424T and "Cupriavidus neocalidonicus" STM 6070. The STM 6018 genome contains the genomes of two prophages: one complete Mu-like capsular phage and one filamentous phage, which integrates into a putative dif site. This is the first characterization of a filamentous phage found within the genome of a rhizobial strain. Further examination of sequenced rhizobial genomes identified filamentous prophage sequences in several Beta-rhizobial strains but not in any Alphaproteobacterial rhizobia.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa