Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nucleic Acids Res ; 51(13): 6857-6869, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37264907

RESUMO

Bacterial conjugation is the main mechanism for the dissemination of antibiotic resistance genes. A single DNA strand of the conjugative plasmid is transferred across bacterial membranes covalently bound to a large multi-domain protein, named relaxase, which must be unfolded to traverse the secretion channel. Two tyrosine residues of the relaxase (Y18 and Y26 in relaxase TrwC) play an important role in the processing of conjugative DNA. We have used nanopore technology to uncover the unfolding states that take place during translocation of the relaxase-DNA complex. We observed that the relaxase unfolding pathway depends on the tyrosine residue involved in conjugative DNA binding. Transfer of the nucleoprotein complex is faster when DNA is bound to residue Y18. This is the first time in which a protein-DNA complex that is naturally translocated through bacterial membranes has been analyzed by nanopore sensing, opening new horizons to apply this technology to study protein secretion.


Assuntos
Conjugação Genética , DNA Nucleotidiltransferases , Nanoporos , Proteínas de Bactérias/metabolismo , DNA Nucleotidiltransferases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Plasmídeos/genética , Tirosina/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(31): 7967-7972, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012626

RESUMO

The transport of proteins across or into membranes is a vital biological process, achieved in every cell by the conserved Sec machinery. In bacteria, SecYEG combines with the SecA motor protein for secretion of preproteins across the plasma membrane, powered by ATP hydrolysis and the transmembrane proton-motive force (PMF). The activities of SecYEG and SecA are modulated by membrane lipids, particularly cardiolipin (CL), a specialized phospholipid known to associate with a range of energy-transducing machines. Here, we identify two specific CL binding sites on the Thermotoga maritima SecA-SecYEG complex, through application of coarse-grained molecular dynamics simulations. We validate the computational data and demonstrate the conserved nature of the binding sites using in vitro mutagenesis, native mass spectrometry, biochemical analysis, and fluorescence spectroscopy of Escherichia coli SecYEG. The results show that the two sites account for the preponderance of functional CL binding to SecYEG, and mediate its roles in ATPase and protein transport activity. In addition, we demonstrate an important role for CL in the conferral of PMF stimulation of protein transport. The apparent transient nature of the CL interaction might facilitate proton exchange with the Sec machinery, and thereby stimulate protein transport, by a hitherto unexplored mechanism. This study demonstrates the power of coupling the high predictive ability of coarse-grained simulation with experimental analyses, toward investigation of both the nature and functional implications of protein-lipid interactions.


Assuntos
Sistemas de Secreção Bacterianos/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Simulação de Dinâmica Molecular , Força Próton-Motriz , Canais de Translocação SEC/química , Thermotoga maritima/química , Sistemas de Secreção Bacterianos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Canais de Translocação SEC/metabolismo , Thermotoga maritima/metabolismo
3.
J Biol Chem ; 294(13): 5050-5059, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30723158

RESUMO

TraB is an FtsK-like DNA translocase responsible for conjugative plasmid transfer in mycelial Streptomyces Unlike other conjugative systems, which depend on a type IV secretion system, Streptomyces requires only TraB protein to transfer the plasmid as dsDNA. The γ-domain of this protein specifically binds to repeated 8-bp motifs on the plasmid sequence, following a mechanism that is reminiscent of the FtsK/SpoIIIE chromosome segregation system. In this work, we purified and characterized the enzymatic activity of TraB, revealing that it is a DNA-dependent ATPase that is highly stimulated by dsDNA substrates. Interestingly, we found that unlike the SpoIIIE protein, the γ-domain of TraB does not confer sequence-specific ATPase stimulation. We also found that TraB binds G-quadruplex DNA structures with higher affinity than TraB-recognition sequences (TRSs). An EM-based structural analysis revealed that TraB tends to assemble as large complexes comprising four TraB hexamers, which might be a prerequisite for DNA translocation across cell membranes. In summary, our findings shed light on the molecular mechanism used by the DNA-translocating motor TraB, which may be shared by other membrane-associated machineries involved in DNA binding and translocation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Streptomyces/metabolismo , Adenosina Trifosfatases/química , Proteínas de Bactérias/química , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Quadruplex G , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Streptomyces/química
4.
Immunity ; 35(3): 375-87, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21903423

RESUMO

Although memory T cells respond more vigorously to stimulation and they are more sensitive to low doses of antigen than naive T cells, the molecular basis of this increased sensitivity remains unclear. We have previously shown that the T cell receptor (TCR) exists as different-sized oligomers on the surface of resting T cells and that large oligomers are preferentially activated in response to low antigen doses. Through biochemistry and electron microscopy, we now showed that previously stimulated and memory T cells have more and larger TCR oligomers at the cell surface than their naive counterparts. Reconstitution of cells and mice with a point mutant of the CD3ζ subunit, which impairs TCR oligomer formation, demonstrated that the increased size of TCR oligomers was directly responsible for the increased sensitivity of antigen-experienced T cells. Thus, we propose that an "avidity maturation" mechanism underlies T cell antigenic memory.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Memória Imunológica , Oligodesoxirribonucleotídeos , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Complexo CD3/genética , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/imunologia , Receptores de Antígenos de Linfócitos T/genética
5.
J Biol Chem ; 293(43): 16923-16930, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30201608

RESUMO

Bacterial conjugation is a key mechanism by which bacteria acquire antibiotic resistance. Therefore, conjugation inhibitors (COINs) are promising compounds in the fight against the spread of antibiotic resistance genes among bacteria. Unsaturated fatty acids (uFAs) and alkynoic fatty acid derivatives, such as 2-hexadecanoic acid (2-HDA), have been reported previously as being effective COINs. The traffic ATPase TrwD, a VirB11 homolog in plasmid R388, is the molecular target of these compounds, which likely affect binding of TrwD to bacterial membranes. In this work, we demonstrate that COINs are abundantly incorporated into Escherichia coli membranes, replacing palmitic acid as the major component of the membrane. We also show that TrwD binds palmitic acid, thus facilitating its interaction with the membrane. Our findings also suggest that COINs bind TrwD at a site that is otherwise occupied by palmitic acid. Accordingly, molecular docking predictions with palmitic acid indicated that it shares the same binding site as uFAs and 2-HDA, although it differs in the contacts involved in this interaction. We also identified 2-bromopalmitic acid, a palmitate analog that inhibits many membrane-associated enzymes, as a compound that effectively reduces TrwD ATPase activity and bacterial conjugation. Moreover, we demonstrate that 2-bromopalmitic and palmitic acids both compete for the same binding site in TrwD. Altogether, these detailed findings open up a new avenue in the search for effective synthetic inhibitors of bacterial conjugation, which may be pivotal for combating multidrug-resistant bacteria.


Assuntos
Adenosina Trifosfatases/metabolismo , Alcinos/farmacologia , Antibacterianos/farmacologia , Conjugação Genética/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos Insaturados/farmacologia , Ácido Palmítico/farmacologia , Alcinos/química , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Simulação de Acoplamento Molecular
6.
FASEB J ; 31(7): 3007-3017, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28373209

RESUMO

While working with G418-resistant stably transfected cells, we realized the neomycin resistance (NeoR) gene, which encodes the aminoglycoside-3'-phosphotransferase-IIa [APH(3')-IIa], also confers resistance to the nucleoside analog fludarabine. Fludarabine is a cytostatic drug widely used in the treatment of hematologic and solid tumors, as well as in the conditioning of patients before transplantation of hematopoietic progenitors. We present evidence that NeoR-transfected cells do not incorporate fludarabine, thus avoiding DNA damage caused by the drug, evidenced by a lack of FANCD2 monoubiquitination and impaired apoptosis. A screening of other nucleoside analogs revealed that APH(3')-IIa only protects against ATP purine analogs. Moreover, APH(3')-IIa ATPase activity is inhibited by fludarabine monophosphate, suggesting that APH(3')-IIa blocks fludarabine incorporation into DNA by dephosphorylating its active fludarabine triphosphate form. Furthermore, overexpression of the catalytic subunit of the eukaryotic kinase PKA, which is structurally related to APHs, also provides resistance to fludarabine, anticipating its putative utility as a response marker to the drug. Our results preclude the use of Neo marker plasmids in the study of purine analogs and unveils a new resistance mechanism against these chemotherapeuticals.-Sánchez-Carrera, D., Bravo-Navas, S., Cabezón, E., Arechaga, I., Cabezas, M., Yáñez, L., Pipaón, C. Fludarabine resistance mediated by aminoglycoside-3'-phosphotransferase-IIa and the structurally related eukaryotic cAMP-dependent protein kinase.


Assuntos
Antineoplásicos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Canamicina Quinase/metabolismo , Vidarabina/análogos & derivados , Sítios de Ligação , Linhagem Celular Transformada , Clonagem Molecular , Proteínas Quinases Dependentes de AMP Cíclico/genética , Fibroblastos , Humanos , Canamicina Quinase/genética , Estrutura Molecular , Relação Estrutura-Atividade , Vidarabina/química , Vidarabina/farmacologia
7.
Biochim Biophys Acta Biomembr ; 1859(6): 1124-1132, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28284722

RESUMO

Mitochondria, chloroplasts and photosynthetic bacteria are characterized by the presence of complex and intricate membrane systems. In contrast, non-photosynthetic bacteria lack membrane structures within their cytoplasm. However, large scale over-production of some membrane proteins, such as the fumarate reductase, the mannitol permease MtlA, the glycerol acyl transferase PlsB, the chemotaxis receptor Tsr or the ATP synthase subunit b, can induce the proliferation of intra cellular membranes (ICMs) in the cytoplasm of Escherichia coli. These ICMs are particularly rich in cardiolipin (CL). Here, we have studied the effect of CL in the generation of these membranous structures. We have deleted the three genes (clsA, clsB and clsC) responsible of CL biosynthesis in E. coli and analysed the effect of these mutations by fluorescent and electron microscopy and by lipid mass spectrometry. We have found that CL is essential in the formation of non-lamellar structures in the cytoplasm of E. coli cells. These results could help to understand the structuration of membranes in E. coli and other membrane organelles, such as mitochondria and ER.


Assuntos
Proteínas de Bactérias/metabolismo , Cardiolipinas/metabolismo , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/deficiência , Mitocôndrias/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Proteínas de Bactérias/genética , ATPases Bacterianas Próton-Translocadoras/genética , ATPases Bacterianas Próton-Translocadoras/metabolismo , Retículo Endoplasmático/ultraestrutura , Escherichia coli/ultraestrutura , Corantes Fluorescentes/química , Deleção de Genes , Expressão Gênica , Isoenzimas/deficiência , Isoenzimas/genética , Proteínas de Membrana/genética , Mitocôndrias/ultraestrutura , Imagem com Lapso de Tempo , Transferases (Outros Grupos de Fosfato Substituídos)/genética
8.
Mol Microbiol ; 100(5): 912-21, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26915347

RESUMO

Bacterial conjugation is the main mechanism responsible for the dissemination of antibiotic resistance genes. Hence, the search for specific conjugation inhibitors is paramount in the fight against the spread of these genes. In this pursuit, unsaturated fatty acids have been found to specifically inhibit bacterial conjugation. Despite the growing interest on these compounds, their mode of action and their specific target remain unknown. Here, we identified TrwD, a Type IV secretion traffic ATPase, as the molecular target for fatty acid-mediated inhibition of conjugation. Moreover, 2-alkynoic fatty acids, which are also potent inhibitors of bacterial conjugation, are also powerful inhibitors of the ATPase activity of TrwD. Characterization of the kinetic parameters of ATPase inhibition has led us to identify the catalytic mechanism by which fatty acids exert their activity. These results open a new avenue for the rational design of inhibitors of bacterial conjugation in the fight against the dissemination of antibiotic resistance genes.


Assuntos
Adenosina Trifosfatases/metabolismo , Conjugação Genética/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Ácidos Graxos Insaturados/farmacologia , Ácido Linoleico/farmacologia , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/química , Ácidos Graxos Insaturados/síntese química , Cinética , Simulação de Acoplamento Molecular , Plasmídeos
9.
J Bacteriol ; 195(18): 4195-201, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852869

RESUMO

Pilus biogenesis and substrate transport by type IV secretion systems require energy, which is provided by three molecular motors localized at the base of the secretion channel. One of these motors, VirB11, belongs to the superfamily of traffic ATPases, which includes members of the type II secretion system and the type IV pilus and archaeal flagellar assembly apparatus. Here, we report the functional interactions between TrwD, the VirB11 homolog of the conjugative plasmid R388, and TrwK and TrwB, the motors involved in pilus biogenesis and DNA transport, respectively. Although these interactions remained standing upon replacement of the traffic ATPase by a homolog from a phylogenetically related conjugative system, namely, TraG of plasmid pKM101, this homolog could not replace the TrwD function for DNA transfer. This result suggests that VirB11 works as a switch between pilus biogenesis and DNA transport and reinforces a mechanistic model in which VirB11 proteins act as traffic ATPases by regulating both events in type IV secretion systems.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Proteínas Motores Moleculares/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Transporte Biológico , Conjugação Genética , Fímbrias Bacterianas/genética , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Mutação , Plasmídeos , Domínios e Motivos de Interação entre Proteínas
10.
J Biol Chem ; 287(21): 17408-17414, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22467878

RESUMO

TrwD, the VirB11 homologue in conjugative plasmid R388, is a member of the large secretion ATPase superfamily, which includes ATPases from bacterial type II and type IV secretion systems, type IV pilus, and archaeal flagellae assembly. Based on structural studies of the VirB11 homologues in Helicobacter pylori and Brucella suis and the archaeal type II secretion ATPase GspE, a unified mechanism for the secretion ATPase superfamily has been proposed. Here, we have found that the ATP turnover of TrwD is down-regulated by physiological concentrations of magnesium. This regulation is exerted by increasing the affinity for ADP, hence delaying product release. Circular dichroism and limited proteolysis analysis indicate that magnesium induces conformational changes in the protein that promote a more rigid, but less active, form of the enzyme. The results shown here provide new insights into the catalytic mechanism of the secretion ATPase superfamily.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Brucella suis/enzimologia , Helicobacter pylori/enzimologia , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Brucella suis/genética , Helicobacter pylori/genética , Plasmídeos/genética , Plasmídeos/metabolismo
11.
J Biol Chem ; 287(47): 39925-32, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23035111

RESUMO

VirB4 proteins are ATPases essential for pilus biogenesis and protein transport in type IV secretion systems. These proteins contain a motor domain that shares structural similarities with the motor domains of DNA translocases, such as the VirD4/TrwB conjugative coupling proteins and the chromosome segregation pump FtsK. Here, we report the three-dimensional structure of full-length TrwK, the VirB4 homologue in the conjugative plasmid R388, determined by single-particle electron microscopy. The structure consists of a hexameric double ring with a barrel-shaped structure. The C-terminal half of VirB4 proteins shares a striking structural similarity with the DNA translocase TrwB. Docking the atomic coordinates of the crystal structures of TrwB and FtsK into the EM map revealed a better fit for FtsK. Interestingly, we have found that like TrwB, TrwK is able to bind DNA with a higher affinity for G4 quadruplex structures than for single-stranded DNA. Furthermore, TrwK exerts a dominant negative effect on the ATPase activity of TrwB, which reflects an interaction between the two proteins. Our studies provide new insights into the structure-function relationship and the evolution of these DNA and protein translocases.


Assuntos
Adenosina Trifosfatases/química , Agrobacterium tumefaciens/enzimologia , Proteínas de Bactérias/química , Proteínas de Transporte/química , DNA de Cadeia Simples/química , Simulação de Acoplamento Molecular , Filogenia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
12.
Plasmid ; 70(1): 146-53, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23583564

RESUMO

The stability of components of multiprotein complexes often relies on the presence of the functional complex. To assess structural dependence among the components of the R388 Type IV secretion system (T4SS), the steady-state level of several Trw proteins was determined in the absence of other Trw components. While several Trw proteins were affected by the lack of others, we found that the coupling protein TrwB is not affected by the absence of other T4SS components, nor did its absence alter significantly the levels of integral components of the complex, underscoring the independent role of the coupling protein on the T4SS architecture. The cytoplasmic ATPases TrwK (VirB4) and TrwD (VirB11) were affected by the absence of several core complex components, while the pilus component TrwJ (VirB5) required the presence of all other Trw proteins (except for TrwB) to be detectable. Overall, the results delineate a possible assembly pathway for the T4SS of R388. We have also tested structural complementation of TrwD (VirB11) and TrwJ (VirB5) by their homologues in the highly related Trw system of Bartonella tribocorum (Bt). The results reveal a correlation with the functional complementation data previously reported.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Conjugação Genética , DNA Bacteriano/genética , Escherichia coli/genética , Fímbrias Bacterianas/genética , Plasmídeos/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Bartonella/genética , Bartonella/metabolismo , Replicação do DNA , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Teste de Complementação Genética , Óperon , Plasmídeos/metabolismo
13.
Front Cell Infect Microbiol ; 13: 1255852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089815

RESUMO

Many pathogens use Type III and Type IV protein secretion systems to secrete virulence factors from the bacterial cytosol into host cells. These systems operate through a one-step mechanism. The secreted substrates (protein or nucleo-protein complexes in the case of Type IV conjugative systems) are guided to the base of the secretion channel, where they are directly delivered into the host cell in an ATP-dependent unfolded state. Despite the numerous disparities between these secretion systems, here we have focused on the structural and functional similarities between both systems. In particular, on the structural similarity shared by one of the main ATPases (EscN and VirD4 in Type III and Type IV secretion systems, respectively). Interestingly, these ATPases also exhibit a structural resemblance to F1-ATPases, which suggests a common mechanism for substrate secretion. The correlation between structure and function of essential components in both systems can provide significant insights into the molecular mechanisms involved. This approach is of great interest in the pursuit of identifying inhibitors that can effectively target these systems.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo IV , Sistemas de Secreção Tipo IV/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Transporte Proteico , Adenosina Trifosfatases , Sistemas de Secreção Tipo III/metabolismo
14.
J Biol Chem ; 286(19): 17376-82, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454654

RESUMO

Type IV secretion systems (T4SS) mediate the transfer of DNA and protein substrates to target cells. TrwK, encoded by the conjugative plasmid R388, is a member of the VirB4 family, comprising the largest and most conserved proteins of T4SS. In a previous work we demonstrated that TrwK is able to hydrolyze ATP. Here, based on the structural homology of VirB4 proteins with the DNA-pumping ATPase TrwB coupling protein, we generated a series of variants of TrwK where fragments of the C-terminal domain were sequentially truncated. Surprisingly, the in vitro ATPase activity of these TrwK variants was much higher than that of the wild-type enzyme. Moreover, addition of a synthetic peptide containing the amino acid residues comprising this C-terminal region resulted in the specific inhibition of the TrwK variants lacking such domain. These results indicate that the C-terminal end of TrwK plays an important regulatory role in the functioning of the T4SS.


Assuntos
Adenosina Trifosfatases/química , Sistemas de Secreção Bacterianos , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Membrana Celular/metabolismo , Enzimas/química , Teste de Complementação Genética , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
15.
J Exp Med ; 202(4): 493-503, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16087711

RESUMO

A long-standing paradox in the study of T cell antigen recognition is that of the high specificity-low affinity T cell receptor (TCR)-major histocompatibility complex peptide (MHCp) interaction. The existence of multivalent TCRs could resolve this paradox because they can simultaneously improve the avidity observed for monovalent interactions and allow for cooperative effects. We have studied the stoichiometry of the TCR by Blue Native-polyacrylamide gel electrophoresis and found that the TCR exists as a mixture of monovalent (alphabetagammaepsilondeltaepsilonzetazeta) and multivalent complexes with two or more ligand-binding TCRalpha/beta subunits. The coexistence of monovalent and multivalent complexes was confirmed by electron microscopy after label fracture of intact T cells, thus ruling out any possible artifact caused by detergent solubilization. We found that although only the multivalent complexes become phosphorylated at low antigen doses, both multivalent and monovalent TCRs are phosphorylated at higher doses. Thus, the multivalent TCRs could be responsible for sensing low concentrations of antigen, whereas the monovalent TCRs could be responsible for dose-response effects at high concentrations, conditions in which the multivalent TCRs are saturated. Thus, besides resolving TCR stoichiometry, these data can explain how T cells respond to a wide range of MHCp concentrations while maintaining high sensitivity.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular , Proliferação de Células , Relação Dose-Resposta Imunológica , Humanos , Hibridomas , Ativação Linfocitária/imunologia , Fosforilação , Coelhos , Linfócitos T/ultraestrutura
16.
Int Immunol ; 22(11): 897-903, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21059766

RESUMO

Structural information on how the TCR transmits signals upon binding of its antigen peptide MHC molecule ligand is still lacking. The ectodomains of the TCRα/ß, CD3εγ and CD3εδ dimers, as well as the transmembrane domain of CD3ζ, have been characterized by X-ray crystallography and nuclear magnetic resonance (NMR). However, no structural data have been obtained for the entire TCR complex. In this study, we have purified the TCR from T cells under native conditions and used electron microscopy to derive a three-dimensional structure. The TCR complex appears as a pear-shaped structure of 180 × 120 × 65 . Furthermore, the use of mAbs has allowed to determine the orientation of the TCRα/ß and CD3 subunits and to suggest a model of interactions. Interestingly, the reconstructed TCR is larger than expected for a complex with a αßγεδεζζ stoichiometry. The accommodation of a second TCRαß to fill in the extra volume is discussed.


Assuntos
Receptores de Antígenos de Linfócitos T/química , Animais , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Camundongos , Microscopia Eletrônica , Modelos Moleculares , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/química , Linfócitos T/imunologia
17.
FASEB J ; 24(12): 4960-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20732951

RESUMO

Phosphofructokinase is a sophisticated allosteric enzyme that is fundamental for the control of glycolysis. The structure of the bacterial enzyme is well characterized. However, little is known about the structural organization of the more complex enzyme from mammals. We have obtained the structure of human muscle phosphofructokinase in the presence of fructose 6-phosphate at a resolution of 1.8 nm by electron microscopy (EM). Particles of the tetrameric enzyme corresponded to an elongated molecule (14.5 × 9 nm) arranged into 2 dimeric subdomains. Image analysis and 3-dimensional reconstruction showed the presence of a prominent channel in one of the dimers but not in the opposite one, revealing that they are in greatly different conformations. Fitting of bacterial structures into the EM model suggested disruption of the fructose 6-phosphate catalytic and the fructose 2,6-bisphophate allosteric sites in the cavity-containing dimer. Therefore, the reported structure might have major implications for the function of mammalian phosphofructokinase.


Assuntos
Proteínas Musculares/química , Proteínas Musculares/metabolismo , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Humanos , Microscopia Eletrônica de Varredura , Modelos Moleculares , Fosfofrutoquinase-1 Muscular/química , Fosfofrutoquinase-1 Muscular/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
18.
Front Microbiol ; 12: 750200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671336

RESUMO

Bacterial conjugation is the main mechanism for horizontal gene transfer, conferring plasticity to the genome repertoire. This process is also the major instrument for the dissemination of antibiotic resistance genes. Hence, gathering primary information of the mechanism underlying this genetic transaction is of a capital interest. By using fluorescent protein fusions to the ATPases that power conjugation, we have been able to track the localization of these proteins in the presence and absence of recipient cells. Moreover, we have found that more than one copy of the conjugative plasmid is transferred during mating. Altogether, these findings provide new insights into the mechanism of such an important gene transfer device.

19.
Front Mol Biosci ; 7: 204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195397

RESUMO

The current outbreak of SARS-CoV-2 virus has caused a large increase in mortality and morbidity associated with respiratory diseases. Huge efforts are currently ongoing to develop a vaccine against this virus. However, alternative approaches could be considered in the fight against this disease. Among other strategies, structural-based drug design could be an effective approach to generate specific molecules against SARS-CoV-2, thus reducing viral burden in infected patients. Here, in addition to this structural approach, we also revise several therapeutic strategies to fight against this viral threat. Furthermore, we report ACE-2 genetic polymorphic variants affecting residues involved in close contacts with SARS-CoV-2 that might be associated to different infection risks. These analyses could provide valuable information to predict the course of the disease.

20.
Methods Mol Biol ; 2075: 135-143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31584160

RESUMO

Biogenesis of T4SS apparatus and substrate transport require energy. Conjugative T4SS have three ATPases that enable DNA processing and transport of the nucleoprotein complex to the recipient cell. In the conjugative plasmid R388, these ATPases are named TrwB, TrwK, and TrwD. Here, three different spectrophotometric assays to measure the enzymatic properties of these ATPases are described. The choice of the assay will depend on the specific requirements of each enzyme.


Assuntos
Adenosina Trifosfatases/metabolismo , Espectrofotometria , Sistemas de Secreção Tipo V/metabolismo , Proteínas de Bactérias/metabolismo , Ativação Enzimática , Hidrólise , Espectrofotometria/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa