Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
J Biomed Opt ; 27(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36088529

RESUMO

SIGNIFICANCE: Fiber-optic extended-wavelength diffuse reflectance spectroscopy (EWDRS) using both visible/near-infrared and shortwave-infrared detectors enables improved detection of spectral absorbances arising from lipids, water, and collagen and has demonstrated promise in a variety of applications, including detection of nerves and neurovascular bundles (NVB). Development of future applications of EWDRS for nerve detection could benefit from the use of model-based analyses including Monte Carlo (MC) simulations and evaluation of agreement between model systems and empirical measurements. AIM: The aim of this work is to characterize agreement between EWDRS measurements and simulations and inform future applications of model-based studies of nerve-detecting applications. APPROACH: A model-based platform consisting of an ex vivo microsurgical nerve dissection model, unique two-layer optical phantoms, and MC model simulations of fiber-optic EWDRS spectroscopic measurements were used to characterize EWDRS and compare agreement across models. In addition, MC simulations of an EWDRS measurement scenario are performed to provide a representative example of future analyses. RESULTS: EWDRS studies performed in the common chicken thigh femoral nerve microsurgical dissection model indicate similar spectral features for classification of NVB versus adjacent tissues as reported in porcine models and human subjects. A comparison of measurements from unique EWDRS issue mimicking optical phantoms and MC simulations indicates high agreement between the two in homogeneous and two-layer optical phantoms, as well as in dissected tissues. Finally, MC simulations of measurement over a simulated NVB indicate the potential of future applications for measurement of nerve plexus. CONCLUSIONS: Characterization of agreement between fiber-optic EWDRS measurements and MC simulations demonstrates strong agreement across a variety of tissues and optical phantoms, offering promise for further use to guide the continued development of EWDRS for translational applications.


Assuntos
Tecnologia de Fibra Óptica , Modelos Biológicos , Animais , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Análise Espectral , Suínos
3.
Biomed Opt Express ; 13(5): 2797-2809, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35774304

RESUMO

Newborns in high-income countries are routinely screened for neonatal jaundice using transcutaneous bilirubinometery (TcB). In low-and middle-income countries, TcB is not widely used due to a lack of availability; however, mobile-phone approaches for TcB could help expand screening opportunities. We developed a mobile phone-based approach for TcB and validated the method with a 37 patient multi-ethnic pilot study. We include a custom-designed snap-on adapter that is used to create a spatially resolved diffuse reflectance detection configuration with the illumination provided by the mobile-phone LED flash. Monte-Carlo models of reflectance from neonatal skin were used to guide the design of an adapter for filtered red-green-blue (RGB) mobile-phone camera reflectance measurements. We extracted measures of reflectance from multiple optimized spatial-offset regions-of-interest (ROIs) and a linear model was developed and cross-validated. This resulted in a correlation between total serum bilirubin and mobile-phone TcB estimated bilirubin with a R 2= 0.42 and Bland-Altman limits of agreement of +6.4 mg/dL to -7.0 mg/dL. These results indicate that a mobile phone with a modified adapter can be utilized to measure neonatal bilirubin values, thus creating a novel tool for neonatal jaundice screening in low-resource settings.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa