Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Ecotoxicol Environ Saf ; 220: 112354, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34116335

RESUMO

Hydropower generation, a renewable source of electricity, has been linked to elevated methylmercury (MeHg) concentrations in impoundments and aquatic biota. This study investigates the impact of water level fluctuations (WLF) on MeHg concentrations in water, sediment, and fish. Using a set of controlled microcosm experiments emulating the drawdown/refill dynamics and subsequent sediment exposure to air experienced in reservoirs, we demonstrate that less frequent WLFs, and/or increased exposure of sediment to air, can lead to elevated MeHg concentrations in sediment, and total mercury (THg) and MeHg concentrations in water. In examining the effects of WLF frequency (two-day, weekly, and monthly), the monthly treatment displayed the highest THg and MeHg water levels, while the weekly treatment was characterized by the highest MeHg levels in the sediment. Our work supports emerging evidence that longer duration between WLF creates a larger surface area of sediment exposed to air leading to conditions conducive to higher MeHg concentrations in sediments and water. In contrast, THg, MeHg, and fatty acid trends in fish were largely inconclusive characterized by similar among-treatment effects and minimal temporal variability over the course of our experiment. This result could partly be attributed to overall low mercury levels and simple "worm-forage fish" food web in our experiment. To elucidate the broader impacts of water fluctuations on aquatic chemistry and biota, other factors (e.g., longer WLF cycles, dissolved organic matter, temperature, more complex food webs) which modulate both methylation rates and food web dynamics must be considered.


Assuntos
Mercúrio/análise , Movimentos da Água , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Peixes/metabolismo , Cadeia Alimentar , Sedimentos Geológicos/química , Compostos de Metilmercúrio/análise , Água/química
2.
Environ Manage ; 64(6): 675-688, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31748947

RESUMO

The enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set biological elements. Drawing a distinction between impaired and natural conditions can be a challenging exercise. Another important aspect is to ensure that water quality assessment is comparable among the different Member States. In this context, the present paper offers a constructive critique of the practices followed during the WFD implementation in Greece by pinpointing methodological weaknesses and knowledge gaps that undermine our ability to classify the ecological quality of Greek lakes. One of the pillars of WDF is a valid lake typology that sets ecological standards transcending geographic regions and national boundaries. The national typology of Greek lakes has failed to take into account essential components. WFD compliance assessments based on the descriptions of phytoplankton communities are oversimplified and as such should be revisited. Exclusion of most chroococcal species from the analysis of cyanobacteria biovolume in Greek lakes/reservoirs and most reservoirs in Spain, Portugal, and Cyprus is not consistent with the distribution of those taxa in lakes. Similarly, the total biovolume reference values and the indices used in classification schemes reflect misunderstandings of WFD core principles. This hampers the comparability of ecological status across Europe and leads to quality standards that are too relaxed to provide an efficient target for the protection of Greek/transboundary lakes such as the ancient Lake Megali Prespa.


Assuntos
Lagos , Fitoplâncton , Monitoramento Ambiental , Europa (Continente) , Grécia , Região do Mediterrâneo , Portugal , Espanha , Água
3.
J Environ Manage ; 188: 308-321, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28002784

RESUMO

Striving for long-term sustainability in catchments dominated by human activities requires development of interdisciplinary research methods to account for the interplay between environmental concerns and socio-economic pressures. In this study, we present an integrative analysis of the Lake Simcoe watershed, Ontario, Canada, as viewed from the perspective of a socio-ecological system. Key features of our analysis are (i) the equally weighted consideration of environmental attributes with socioeconomic priorities and (ii) the identification of the minimal number of key socio-hydrological variables that should be included in a parsimonious watershed management framework, aiming to establish linkages between urbanization trends and nutrient export. Drawing parallels with the concept of Hydrological Response Units, we used Self-Organizing Mapping to delineate spatial organizations with similar socio-economic and environmental attributes, also referred to as Socio-Environmental Management Units (SEMUs). Our analysis provides evidence of two SEMUs with contrasting features, the "undisturbed" and "anthropogenically-influenced", within the Lake Simcoe watershed. The "undisturbed" cluster occupies approximately half of the Lake Simcoe catchment (45%) and is characterized by low landscape diversity and low average population density <0.4 humans ha-1. By contrast, the socio-environmental functional properties of the "anthropogenically-influenced" cluster highlight the likelihood of a stability loss in the long-run, as inferred from the distinct signature of urbanization activities on the tributary nutrient export, and the loss of subwatershed sensitivity to natural mechanisms that may ameliorate the degradation patterns. Our study also examines how the SEMU concept can augment the contemporary integrated watershed management practices and provides directions in order to promote environmental programs for lake conservation and to increase public awareness and engagement in stewardship initiatives.


Assuntos
Ecossistema , Lagos , Urbanização , Atividades Humanas , Humanos , Hidrologia , Ontário , Fatores Socioeconômicos , Abastecimento de Água
4.
Environ Sci Technol ; 50(19): 10297-10307, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27570873

RESUMO

New scientific understanding is catalyzed by novel technologies that enhance measurement precision, resolution or type, and that provide new tools to test and develop theory. Over the last 50 years, technology has transformed the hydrologic sciences by enabling direct measurements of watershed fluxes (evapotranspiration, streamflow) at time scales and spatial extents aligned with variation in physical drivers. High frequency water quality measurements, increasingly obtained by in situ water quality sensors, are extending that transformation. Widely available sensors for some physical (temperature) and chemical (conductivity, dissolved oxygen) attributes have become integral to aquatic science, and emerging sensors for nutrients, dissolved CO2, turbidity, algal pigments, and dissolved organic matter are now enabling observations of watersheds and streams at time scales commensurate with their fundamental hydrological, energetic, elemental, and biological drivers. Here we synthesize insights from emerging technologies across a suite of applications, and envision future advances, enabled by sensors, in our ability to understand, predict, and restore watershed and stream systems.


Assuntos
Hidrologia , Rios , Temperatura , Qualidade da Água
5.
Environ Sci Technol ; 49(6): 3278-90, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25691078

RESUMO

Watershed models have been widely used for creating the scientific basis for management decisions regarding nonpoint source pollution. In this study, we evaluated the current state of watershed scale, spatially distributed, process-based, water quality modeling of nutrient pollution. Beginning from 1992, the year when Beven and Binley published their seminal paper on uncertainty analysis in hydrological modeling, and ending in 2010, we selected 257 scientific publications which (i) employed spatially distributed modeling approaches at a watershed scale; (ii) provided predictions of flow, nutrient/sediment concentrations or loads; and (iii) reported fit to measured data. Most "best practices" (optimization, validation, sensitivity, and uncertainty analysis) are not consistently employed during model development. There are no statistically significant differences in model performance among land uses. Studies which used more than one point in space to evaluate their distributed models had significantly lower median values of the Nash-Sutcliffe Efficiency (0.70 vs 0.56, p<0.005, nonparametric Mann-Whitney test), and r2 (p<0.005). This finding suggests that model calibration only to the basin outlet may mask compensation of positive and negative errors of source and transportation processes. We conclude by advocating a number of new directions for distributed watershed modeling, including in-depth uncertainty analysis and the use of additional information, not necessarily related to model end points, to constrain parameter estimation.


Assuntos
Modelos Teóricos , Poluição da Água/análise , Qualidade da Água , Calibragem , Conservação dos Recursos Naturais , Determinação de Ponto Final , Hidrologia
6.
Environ Sci Technol ; 49(24): 14494-502, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26592742

RESUMO

Fish mercury levels appear to be increasing in Ontario, Canada, which covers a wide geographical area and contains about 250 000 lakes including a share of the North American Great Lakes. Here we project 2050 mercury levels in Ontario fish, using the recently measured levels and rates of changes observed during the last 15 years, and present potential implications for fish and human health. Percentage of northern Ontario waterbodies where sublethal effects of mercury on fish can occur may increase by 2050 from 60% to >98% for Walleye (WE), 44% to 59-70% for Northern Pike (NP), and 70% to 76-92% for Lake Trout (LT). Ontario waterbodies with unrestricted fish consumption advisories for the general population may deteriorate from 24-76% to <1-33% for WE, 40-95% to 1-93% for NP, and 39-89% to 18-86% for LT. Similarly, Ontario waterbodies with do not eat advisories for the sensitive population may increase from 32-84% to 73-100% for WE, 9-72% to 12-100% for NP, and 19-71% to 24-89% for LT. Risk to health of Ontario fish and humans consuming these fish may increase substantially over the next few decades if the increasing mercury trend continues and updated advisories based on continued monitoring are not issued/followed.


Assuntos
Peixes , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Esocidae , Contaminação de Alimentos , Humanos , Lagos , Ontário , Percas , Saúde Pública , Truta
7.
Environ Sci Technol ; 49(1): 123-31, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25488397

RESUMO

Polychlorinated biphenyls (PCBs) remain chemicals of concern more than three decades after the ban on their production. Technical mixture-based total PCB measurements are unreliable due to weathering and degradation, while detailed full congener specific measurements can be time-consuming and costly for large studies. Measurements using a subset of indicator PCBs (iPCBs) have been considered appropriate; however, inclusion of different PCB congeners in various iPCB schemes makes it challenging to readily compare data. Here, using an extensive data set, we examine the performance of existing iPCB3 (PCB 138, 153, and 180), iPCB6 (iPCB3 plus 28, 52, and 101) and iPCB7 (iPCB6 plus 118) schemes, and new iPCB schemes in estimating total of PCB congeners (∑PCB) and dioxin-like PCB toxic equivalent (dlPCB-TEQ) concentrations in sport fish fillets and the whole body of juvenile fish. The coefficients of determination (R(2)) for regressions conducted using logarithmically transformed data suggest that inclusion of an increased number of PCBs in an iPCB improves relationship with ∑PCB but not dlPCB-TEQs. Overall, novel iPCB3 (PCB 95, 118, and 153), iPCB4 (iPCB3 plus 138) and iPCB5 (iPCB4 plus 110) presented in this study and existing iPCB6 and iPCB7 are the most optimal indicators, while the current iPCB3 should be avoided. Measurement of ∑PCB based on a more detailed analysis (50+ congeners) is also overall a good approach for assessing PCB contamination and to track PCB origin in fish. Relationships among the existing and new iPCB schemes have been presented to facilitate their interconversion. The iPCB6 equiv levels for the 6.5 and 10 pg/g benchmarks of dlPCB-TEQ05 are about 50 and 120 ng/g ww, respectively, which are lower than the corresponding iPCB6 limits of 125 and 300 ng/g ww set by the European Union.


Assuntos
Monitoramento Ambiental/normas , Peixes , Bifenilos Policlorados/análise , Animais , Dioxinas/análise , Bifenilos Policlorados/química , Bifenilos Policlorados/toxicidade , Dibenzodioxinas Policloradas/análise
8.
Ecotoxicol Environ Saf ; 117: 174-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25900434

RESUMO

Polychlorinated biphenyls (PCBs) and total mercury (THg) are two of the most prevalent contaminants, resulting in restrictive advisories on consuming fish from the Laurentian Great Lakes. The goal of this study is to examine the temporal trends of the two contaminants in walleye (Sander vitreus) and lake trout (Salvelinus namaycush) for Lake Ontario. We employed Bayesian inference techniques to parameterize three different strategies of time series analysis: dynamic linear, exponential decay, and mixed-order modeling. Our analysis sheds light on the role of different covariates (length, lipid content) that can potentially hamper the detection of the actual temporal patterns of fish contaminants. Both PCBs and mercury demonstrate decreasing temporal trends in lake trout males and females. Decreasing PCB trends are evident in walleye, but the mean annual mercury levels are characterized by a "wax and wane" pattern, suggesting that specific fish species may not act as bio-indicators for all contaminants. This finding may be attributed to the shifts in energy trophodynamics along with the food web alterations induced from the introduction of non-native species, the intricate nature of the prey-predator interactions, the periodicities of climate factors, and the year-to-year variability of the potentially significant fluxes from atmosphere or sediments. Finally, a meaningful risk assessment exercise will be to elucidate the role of within-lake fish contaminant variability and evaluate the potential bias introduced when drawing inference from pooled datasets.


Assuntos
Mercúrio , Percas , Bifenilos Policlorados , Truta , Poluição Química da Água/estatística & dados numéricos , Animais , Teorema de Bayes , Monitoramento Ambiental , Feminino , Cadeia Alimentar , Lagos , Modelos Lineares , Masculino , Método de Monte Carlo , Ontário , Poluentes Químicos da Água
9.
Environ Sci Technol ; 48(10): 5404-14, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24678891

RESUMO

Recent mercury levels and trends reported for North America suggest a mixed (positive/negative) outlook for the environmental mercury problem. Using one of the largest consistent monitoring data sets in the world, here we present long-term and recent mercury trends in Walleye, Northern Pike, and Lake Trout from the Province of Ontario, Canada, which contains about one-third of the world's fresh water and covers a wide geographical area (1.5 and 3 times larger than France and Germany, respectively). Overall, the results indicate that the fish mercury levels either declined (0.01-0.07 µg/g decade) or remained stable between the 1970s and 2012. The rates of mercury decline were substantially greater (mostly 0.05-0.31 µg/g decade) during the 1970s/80s possibly in response to reductions in mercury emissions. However, Walleye and Pike levels have generally increased (0.01-0.27 µg/g decade) in recent years (1995-2012), especially for northern Ontario (effect sizes for differences between the two periods ranged from 0.39 to 1.04). Proportions of Walleye and Pike locations showing a flat or increasing trend increased from 26-44% to 59-73% between the 1970s/80s and 1995-2012. Mercury emissions in North America have declined over the last few decades, and as such it is logical to expect recovery in fish mercury levels; however, other factors such as global emissions, climate change, invasive species, and local geochemistry are likely affecting the response time and magnitude.


Assuntos
Monitoramento Ambiental , Peixes/metabolismo , Mercúrio/análise , Animais , Esocidae/metabolismo , Lagos/química , Modelos Teóricos , Ontário , Percas/metabolismo , Fatores de Tempo , Truta/metabolismo , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 945: 174157, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909812

RESUMO

Freshwater systems in cold regions, including the Laurentian Great Lakes, are threatened by both eutrophication and salinization, due to excess nitrogen (N), phosphorus (P) and chloride (Cl-) delivered in agricultural and urban runoff. However, identifying the relative contribution of urban vs. agricultural development to water quality impairment is challenging in watersheds with mixed land cover, which typify most developed regions. In this study, a self-organizing map (SOM) analysis was used to evaluate the contributions of various forms of land cover to water quality impairment in southern Ontario, a population-dense, yet highly agricultural region in the Laurentian Great Lakes basin where urban expansion and agricultural intensification have been associated with continued water quality impairment. Watersheds were classified into eight spatial clusters, representing four categories of agriculture, one urban, one natural, and two mixed land use clusters. All four agricultural clusters had high nitrate-N concentrations, but levels were especially high in watersheds with extensive corn and soybean cultivation, where exceedances of the 3 mg L-1 water quality objective dramatically increased above a threshold of |∼30 % watershed row crop cover. Maximum P concentrations also occurred in the most heavily tile-drained cash crop watersheds, but associations between P and land use were not as clear as for N. The most urbanized watersheds had the highest Cl- concentrations and expansions in urban area were mostly at the expense of surrounding agricultural land cover, which may drive intensification of remaining agricultural lands. Expansions in tile-drained corn and soybean area, often at the expense of mixed, lower intensity agriculture are not unique to this area and suggest that river nitrate-N levels will continue to increase in the future. The SOM approach provides a powerful means of simplifying heterogeneous land cover characteristics that can be associated with water quality patterns and identify problem areas to target management.

11.
Environ Sci Technol ; 46(13): 7283-92, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22676391

RESUMO

An ecosystem perspective to restoring beneficial uses in Areas of Concern can be interpreted as a shift from the traditional elucidation of simple cause-effect relationships to a multicausal way of thinking that more effectively accommodates ecosystem complexity. This holistic management paradigm has also pervaded the contemporary ecological modeling practice, making compelling the adoption of more sophisticated ecosystem modeling tools. In this study, our primary objective is to develop a Bayesian hierarchical network of simple ecological models for Lake Simcoe, Ontario, Canada, aiming to establish a realistic representation of the causal connections among exogenous nutrient loading, ambient nutrient conditions, and epilimnetic plankton dynamics. In particular, we used a spatially explicit simple mass-balance model forced with idealized sinusoidal loading to predict total phosphorus concentrations. A structural equation model was then used to delineate the interplay among nutrients, ambient light conditions, phytoplankton, and herbivorous biomass. Our analysis highlights the strength of the causal linkages between total phosphorus and water clarity with phytoplankton as well as the capacity of zooplankton grazing to modulate the algal standing crop. Our Bayesian network is also used to examine the exceedance frequency of threshold values for total phosphorus (15 µg/L) and chlorophyll a (4 µg/L) concentrations under scenarios of phosphorus loading reduction. Our study suggests that a 15% phosphorus loading decrease will still result in >25% violations of the 4 µg chla/L value in the two embayments of Lake Simcoe (Cook's Bay and Kempenfelt Bay). The TP levels will decrease in response to the exogenous loading reductions and this improvement will be primarily manifested in the northcentral segments of the system.


Assuntos
Ecossistema , Lagos/análise , Fósforo/análise , Plâncton/crescimento & desenvolvimento , Animais , Teorema de Bayes , Clorofila/análise , Clorofila A , Modelos Biológicos , Modelos Químicos , Ontário
12.
J Environ Monit ; 14(9): 2327-37, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22785387

RESUMO

The English-Wabigoon River system in Northwestern Ontario, Canada, was one of the most heavily mercury-contaminated waterways in the world due to historical discharges in the 1960s from a chlor-alkali plant. This study examines long-term (1970-2010) monitoring data to assess temporal trends in mercury contamination in Walleye, Northern Pike and Lake Whitefish, three species important for sport and subsistence fishing in this region, using dynamic linear modeling and piecewise regression. For all lakes and species, there is a significant decline (36-94%) in mercury concentrations through time; however, there is evidence that this decline is either slowing down or levelling off. Concentrations in the English-Wabigoon fish are elevated, and may still present a potential health risk to humans consuming fish from this system. Various biotic and abiotic factors are examined as possible explanations to slowing rates of decline in mercury concentrations observed in the mid-1980s.


Assuntos
Monitoramento Ambiental , Peixes/metabolismo , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/estatística & dados numéricos , Animais , Pesqueiros/estatística & dados numéricos , Contaminação de Alimentos/estatística & dados numéricos , Humanos , Mercúrio/análise , Ontário , Rios/química , Poluentes Químicos da Água/análise
13.
Ecotoxicol Environ Saf ; 74(8): 2203-14, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21835464

RESUMO

We performed dynamic linear modeling analysis on fish contaminant data collected from the Ontario Ministry of the Environment and Environment Canada to examine long-term trends of total mercury (THg) and polychlorinated biphenyls (PCBs) in Lake Erie. Several sport fish species (walleye, smallmouth bass, rainbow trout) with differences in their diet habits, food competition strategies and foraging patterns are characterized by weakly increasing trends of their THg levels in Lake Erie after the mid- or late 1990s. Similarly, our analysis shows that the decline rates of the PCB body burdens in white bass, smallmouth bass, freshwater drum and whitefish have slowed down or have switched to weakly increasing rates over the last decade. Our analysis also provides evidence that the rainbow trout and coho salmon PCB concentrations have been decreasing steadily but the associated rates were fairly weak. The systematic shifts in energy trophodynamics along with the food web alterations induced from the introduction of non-native species, the new role of the sediments as a net contaminant source, and the potentially significant fluxes from the atmosphere stand out as some of the hypotheses proposed to explain the limited Lake Erie response in recent years to the various contamination mitigation strategies.


Assuntos
Peixes/metabolismo , Modelos Lineares , Mercúrio/metabolismo , Bifenilos Policlorados/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Monitoramento Ambiental , Cadeia Alimentar , Lagos/química , Mercúrio/análise , Ontário , Percas/metabolismo , Perciformes/metabolismo , Bifenilos Policlorados/análise , Salmonidae/metabolismo , Poluentes Químicos da Água/análise
14.
Ecotoxicol Environ Saf ; 74(5): 1107-21, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21536330

RESUMO

Dynamic linear modeling (DLM) analysis was performed to identify the long-term temporal trends of two toxic components of the technical chlordane pesticide, α- and γ-chlordane, in skinless-boneless muscle tissues of a number of sport fish species in Lake Erie. Our analysis considers the fish length as a covariate of the chlordane concentrations. The α-chlordane models for the coho salmon, channel catfish, rainbow trout, and common carp showed continuously decreasing trends during the entire 30+ year survey period (1976-2007). The γ-chlordane models demonstrated similar trends for the coho salmon, channel catfish, and common carp. These fish species had higher levels of α- and γ-chlordane in their muscle tissues. The α- and γ-chlordane levels in freshwater drum, smallmouth bass, walleye, white bass, whitefish, and yellow perch decreased until the mid-1980s and hovered at levels around the detection limits for the remaining period. The pesticide biotransformation process, the reduction of contaminant emissions to the environment, the feeding habits of the different fish species, and the food-web alterations induced by the introduction of aquatic invasive species are some of the hypotheses proposed to explain the observed temporal trends in different fish species in Lake Erie.


Assuntos
Clordano/metabolismo , Monitoramento Ambiental/métodos , Peixes/metabolismo , Água Doce/química , Inseticidas/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Carpas/metabolismo , Clordano/análise , Inseticidas/análise , Espécies Introduzidas , Modelos Lineares , Músculos/metabolismo , Percas/metabolismo , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos
15.
Water Res ; 201: 117309, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34116294

RESUMO

Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003-2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH3-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH3-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH3-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH3-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH3-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading.


Assuntos
Rios , Poluentes Químicos da Água , Teorema de Bayes , China , Monitoramento Ambiental , Eutrofização , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Qualidade da Água
16.
Ecology ; 91(1): 180-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20380207

RESUMO

We collected suspended particulate matter (seston) and zooplankton samples from Lake Washington in Seattle, Washington, U.S.A., over a 10-month period to investigate the effects of food availability on zooplankton fatty acid (FA) composition. The percentage of nutritionally critical omega3 polyunsaturated fatty acids (PUFA) in the seston varied from 8% of the FA pool in midsummer to 30% during the spring diatom bloom. Zooplankton accumulated much higher percentages omega3 PUFA than was available in the seston. In particular, cladocerans preferentially accumulated eicosapentaenoic acid (EPA, 20:5omega3), copepods accumulated docosahexaenoic acid (DHA, 22:6omega3), and both copepods and cladocerans accumulated 18 carbon chain omega3 PUFAs (C18 omega3). By comparison, the FA of zooplanktivorous juvenile sockeye salmon (Oncorhynchus nerka) were strongly dominated by EPA (12.5% +/- 2.1%) and DHA (28.2% +/- 8.7%). The saturated fatty acid and the arachidonic acid (ARA, 20:4omega6) composition of Diaptomus ashlandi was strongly (r2 = 0.76) and moderately (r2 = 0.54) correlated with the prevalence of these FAs in the seston. Furthermore, the DHA content of Diaptomus was moderately correlated with the seston's DHA content (r2 = 0.45) and very strongly correlated with seston EPA (r2 = 0.89). Since EPA was the most prevalent PUFA in the seston and DHA was the most prevalent PUFA in Diaptomus, these results suggest that Diaptomus may synthesize DHA from the EPA in their food. In general, zooplankton species in Lake Washington were strongly enriched with those FA molecules that are most physiologically important for fish nutrition (i.e., ARA, EPA, and DHA), indicating a clear mechanism by which changes in seston composition influence fisheries ecology.


Assuntos
Ácidos Graxos/análise , Lipídeos/farmacologia , Zooplâncton/efeitos dos fármacos , Zooplâncton/metabolismo , Animais , Carbono , Clorofila , Clorofila A , Ácidos Graxos/metabolismo , Água Doce , Metabolismo dos Lipídeos , Estações do Ano , Washington , Zooplâncton/química
17.
Water Res ; 181: 115902, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32505885

RESUMO

Harmful algal blooms (HABs) can have dire repercussions on aquatic wildlife and human health, and may negatively affect recreational uses, aesthetics, taste, and odor in drinking water. The factors that influence the occurrence and magnitude of harmful algal blooms and toxin production remain poorly understood and can vary in space and time. It is within this context that we use machine learning (ML) and two 14-year (2005-2018) data sets on water quality and meteorological conditions of China's lakes and reservoirs to shed light on the magnitude and associated drivers of HAB events. General regression neural network (GRNN) models are developed to predict chlorophyll a concentrations for each lake and reservoir during two study periods (2005-2010 and 2011-2018). The developed models with an acceptable model fit are then analyzed by two indices to determine the areal HAB magnitudes and associated drivers. Our national assessment suggests that HAB magnitudes for China's lakes and reservoirs displayed a decreasing trend from 2006 (1363.3 km2) to 2013 (665.2 km2), and a slightly increasing trend from 2013 to 2018 (775.4 km2). Among the 142 studied lakes and reservoirs, most severe HABs were found in Lakes Taihu, Dianchi and Chaohu with their contribution to the total HAB magnitude varying from 89.2% (2013) to 62.6% (2018). HABs in Lakes Taihu and Chaohu were strongly associated with both total phosphorus and nitrogen concentrations, while our results were inconclusive with respect to the predominant environmental factors shaping the eutrophication phenomena in Lake Dianchi. The present study provides evidence that effective HAB mitigation may require both nitrogen and phosphorus reductions and longer recovery times; especially in view of the current climate-change projections. ML represents a robust strategy to elucidate water quality patterns in lakes, where the available information is sufficient to train the constructed algorithms. Our mapping of HAB magnitudes and associated environmental/meteorological drivers can help managers to delineate hot-spots at a national scale, and comprehensively design the best management practices for mitigating the eutrophication severity in China's lakes and reservoirs.


Assuntos
Proliferação Nociva de Algas , Lagos , China , Clorofila A , Monitoramento Ambiental , Eutrofização , Humanos , Fósforo , Qualidade da Água
18.
Sci Total Environ ; 697: 134078, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31479899

RESUMO

Our understanding of the potential impact of climatic change on catchment hydrology and aquatic system dynamics has been advanced over the past decade, but there are still considerable knowledge gaps with respect to its effects on water quality vis-à-vis the increasing demands for drinking water. In this study, we developed an integrated hydrological-water quality (SWAT-YRWQM) model to elucidate the effects of a changing climate on the trophic state of the shallow Yuqiao Reservoir. Using a two-step downscaling process, we reproduced the prevailing meteorological conditions, as well as the streamflows in three major tributaries of the study area. A sensitivity analysis exercise showed that the nature of the calibration dataset used, namely the range of flows (i.e., dry versus wet years) included, can profoundly influence the predictive power of our modeling framework. Our climatic scenarios projected a minor change of the streamflow rates, but a variant degree of increase of the riverine total phosphorus (TP) concentrations and associated loading rates into the reservoir. Consequently, a significant rise of in-lake TP concentrations is projected for the near (2016-2030) and distant (2031-2050) future compared to the reference (2006-2015) conditions. Interestingly, the ambient TP levels appear to be lower in the distant relative to the near future, owing to changes in the magnitude and relative contribution of both external and internal nutrient loading sources. Our analysis also highlights the importance of reservoir operation practices to regulate water levels as a means for mitigating the climate change impact on the trophic status of the Yuqiao Reservoir, given that the diversion of low-nutrient water from the upstream basin can significantly reduce (30-40%) the TP concentrations. Our findings are highly relevant to the on-going debate about the potential implications of climate change for water availability, highlighting the importance of adaptation strategies to optimize the water resources management.

19.
Environ Int ; 130: 104821, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31326868

RESUMO

Evaluating the degree of improvement of an impaired freshwater ecosystem resembles the statistical null-hypothesis testing through which the prevailing conditions are compared against a reference state. The pillars of this process involve the robust delineation of what constitutes an achievable reference state; the establishment of threshold values for key environmental variables that act as proxies of the degree of system impairment; and the development of an iterative decision-making process that takes advantage of monitoring data to assess the system-restoration progress and revisit management actions accordingly. Drawing the dichotomy between impaired and non-impaired conditions is a challenging exercise that is surrounded by considerable uncertainty stemming from the variability that natural systems display over time and space, the presence of ecosystem feedback loops (e.g., internal loading) that actively influence the degree of recovery, and our knowledge gaps about biogeochemical processes directly connected to the environmental problem at hand. In this context, we reappraise the idea of probabilistic water quality criteria, whereby the compliance rule stipulates that no more than a stated number of pre-specified water quality extremes should occur within a given number of samples collected over a compliance assessment domain. Our case study is the Bay of Quinte, Ontario, Canada; an embayment lying on the northeastern end of Lake Ontario with a long history of eutrophication problems. Our study explicitly accounts for the covariance among multiple water quality variables and illustrates how we can assess the degree of improvement for a given number of violations of environmental goals and samples collected from the system. The present framework offers a robust way to impartially characterize the degree of restoration success and minimize the influence of the conflicting perspectives among decision makers/stakeholders and conscious (or unconscious) biases pertaining to water quality management.


Assuntos
Ecossistema , Teorema de Bayes , Monitoramento Ambiental , Eutrofização , Lagos , Ontário , Qualidade da Água
20.
Environ Int ; 123: 96-103, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30503972

RESUMO

China has made considerable efforts to mitigate the pollution of lakes over the past decade, but the success rate of these restoration actions at a national scale remains unclear. The present study compiled a 13-year (2005-2017) comprehensive dataset consisting of 24,319 records from China's 142 lakes and reservoirs. We developed a novel Water Quality Index (WQI-DET), customized to China's water quality classification scheme, to investigate the spatio-temporal pollution patterns. The likelihood of regime shifts during our study period is examined with a sequential algorithm. Our analysis suggests that China's lake water quality has improved and is also characterized by two WQI-DET abrupt shifts in 2007 and 2010. However, we also found that the eutrophication problems have not been eradicated and heavy metal (HM) pollution displayed an increasing trend. Our study suggests that the control of Cr, Cd and As should receive particular attention in an effort to alleviate the severity of HM pollution. Priority strategies to control HM pollution include the reduction of the contribution from mining activities and implementation of soil remediation in highly polluted areas. The mitigation efforts of lake eutrophication are more complicated due to the increasing importance of internal nutrient loading that can profoundly modulate the magnitude and timing of system response to external nutrient loading reduction strategies. We also contend that the development of a rigorous framework to quantify the socioeconomic benefits from well-functioning lake and reservoir ecosystems is critically important to gain leeway and keep the investments to the environment going, especially if the water quality improvements in many Chinese lakes and reservoirs are not realized in a timely manner.


Assuntos
Recuperação e Remediação Ambiental , Lagos , China , Ecossistema , Eutrofização , Lagos/química , Metais Pesados/análise , Mineração , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa