Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 325(1): E83-E98, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224468

RESUMO

Lysine acetylation of proteins has emerged as a key posttranslational modification (PTM) that regulates mitochondrial metabolism. Acetylation may regulate energy metabolism by inhibiting and affecting the stability of metabolic enzymes and oxidative phosphorylation (OxPhos) subunits. Although protein turnover can be easily measured, due to the low abundance of modified proteins, it has been difficult to evaluate the effect of acetylation on the stability of proteins in vivo. We applied 2H2O-metabolic labeling coupled with immunoaffinity and high-resolution mass spectrometry method to measure the stability of acetylated proteins in mouse liver based on their turnover rates. As a proof-of-concept, we assessed the consequence of high-fat diet (HFD)-induced altered acetylation in protein turnover in LDL receptor-deficient (LDLR-/-) mice susceptible to diet-induced nonalcoholic fatty liver disease (NAFLD). HFD feeding for 12 wk led to steatosis, the early stage of NAFLD. A significant reduction in acetylation of hepatic proteins was observed in NAFLD mice, based on immunoblot analysis and label-free quantification with mass spectrometry. Compared with control mice on a normal diet, NAFLD mice had overall increased turnover rates of hepatic proteins, including mitochondrial metabolic enzymes (0.159 ± 0.079 vs. 0.132 ± 0.068 day-1), suggesting their reduced stability. Also, acetylated proteins had slower turnover rates (increased stability) than native proteins in both groups (0.096 ± 0.056 vs. 0.170 ± 0.059 day-1 in control, and 0.111 ± 0.050 vs. 0.208 ± 0.074 day-1 in NAFLD). Furthermore, association analysis revealed a relationship between the HFD-induced decrease in acetylation and increased turnover rates for hepatic proteins in NAFLD mice. These changes were associated with increased expressions of the hepatic mitochondrial transcriptional factor (TFAM) and complex II subunit without any changes to other OxPhos proteins, suggesting that enhanced mitochondrial biogenesis prevented restricted acetylation-mediated depletion of mitochondrial proteins. We conclude that decreased acetylation of mitochondrial proteins may contribute to adaptive improved hepatic mitochondrial function in the early stages of NAFLD.NEW & NOTEWORTHY This is the first method to quantify acetylome dynamics in vivo. This method revealed acetylation-mediated altered hepatic mitochondrial protein turnover in response to a high-fat diet in a mouse model of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica , Acetilação , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Mitocondriais/metabolismo , Renovação Mitocondrial , Camundongos Endogâmicos C57BL
2.
Am J Physiol Endocrinol Metab ; 323(6): E480-E491, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223521

RESUMO

Several aspects of diabetes pathophysiology and complications result from hyperglycemia-induced alterations in the structure and function of plasma proteins. Furthermore, insulin has a significant influence on protein metabolism by affecting both the synthesis and degradation of proteins in various tissues. To understand the role of progressive hyperglycemia on plasma proteins, in this study, we measured the turnover rates of high-density lipoprotein (HDL)-associated proteins in control (chow diet), prediabetic [a high-fat diet (HFD) for 8 wk] or diabetic [HFD for 8 wk with low-dose streptozotocin (HFD + STZ) in weeks 5-8 of HFD] C57BL/6J mice using heavy water (2H2O)-based metabolic labeling approach. Compared with control mice, HFD and HFD + STZ mice showed elevations of fasting plasma glucose levels in the prediabetic and diabetic range, respectively. Furthermore, the HFD and HFD + STZ mice showed increased hepatic triglyceride (TG) levels, total plasma cholesterol, and plasma TGs. The kinetics of 40 proteins were quantified using the proteome dynamics method, which revealed an increase in the fractional synthesis rate (FSR) of HDL-associated proteins in the prediabetic mice compared with control mice, and a decrease in FSR in the diabetic mice. The pathway analysis revealed that proteins with altered turnover rates were involved in acute-phase response, lipid metabolism, and coagulation. In conclusion, prediabetes and diabetes have distinct effects on the turnover rates of HDL proteins. These findings suggest that an early dysregulation of the HDL proteome dynamics can provide mechanistic insights into the changes in protein levels in these conditions.NEW & NOTEWORTHY This study is the first to examine the role of gradual hyperglycemia during diabetes disease progression on HDL-associated protein dynamics in the prediabetes and diabetic mice. Our results show that the fractional synthesis rate of HDL-associated proteins increased in the prediabetic mice whereas it decreased in the diabetic mice compared with control mice. These kinetic changes can help to elucidate the mechanism of altered protein levels and HDL dysfunction during diabetes disease progression.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Estado Pré-Diabético , Camundongos , Animais , Estado Pré-Diabético/complicações , Lipoproteínas HDL , Diabetes Mellitus Experimental/induzido quimicamente , Glicemia/metabolismo , Proteoma , Camundongos Endogâmicos C57BL , Estreptozocina , Dieta Hiperlipídica , Hiperglicemia/metabolismo , Progressão da Doença
3.
Anal Biochem ; 615: 114067, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340539

RESUMO

Cellular availability of acetyl-CoA, a central intermediate of metabolism, regulates histone acetylation. The impact of a high-fat diet (HFD) on the turnover rates of acetyl-CoA and acetylated histones is unknown. We developed a method for simultaneous measurement of acetyl-CoA and acetylated histones kinetics using a single 2H2O tracer, and used it to examine effect of HFD-induced perturbations on hepatic histone acetylation in LDLR-/- mice, a mouse model of non-alcoholic fatty liver disease (NAFLD). Mice were given 2H2O in the drinking water and the kinetics of hepatic acetyl-CoA, histones, and acetylated histones were quantified based on their 2H-labeling. Consumption of a high fat Western-diet (WD) for twelve weeks led to decreased acetylation of hepatic histones (p< 0.05), as compared to a control diet. These changes were associated with 1.5-3-fold increased turnover rates of histones without any change in acetyl-CoA flux. Acetylation significantly reduced the stability of histones and the turnover rates of acetylated peptides were correlated with the number of acetyl groups in neighboring lysine sites. We conclude that 2H2O-method can be used to study metabolically controlled histone acetylation and acetylated histone turnover in vivo.


Assuntos
Acetilcoenzima A/metabolismo , Dieta Hiperlipídica/efeitos adversos , Histonas/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Acetilação , Animais , Óxido de Deutério/administração & dosagem , Humanos , Fígado/metabolismo , Lisina/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa