Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(25): e202304071, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38381807

RESUMO

Hyperpolarized 129Xe gas was FDA-approved as an inhalable contrast agent for magnetic resonance imaging of a wide range of pulmonary diseases in December 2022. Despite the remarkable success in clinical research settings, the widespread clinical translation of HP 129Xe gas faces two critical challenges: the high cost of the relatively low-throughput hyperpolarization equipment and the lack of 129Xe imaging capability on clinical MRI scanners, which have narrow-bandwidth electronics designed only for proton (1H) imaging. To solve this translational grand challenge of gaseous hyperpolarized MRI contrast agents, here we demonstrate the utility of batch-mode production of proton-hyperpolarized diethyl ether gas via heterogeneous pairwise addition of parahydrogen to ethyl vinyl ether. An approximately 0.1-liter bolus of hyperpolarized diethyl ether gas was produced in 1 second and injected in excised rabbit lungs. Lung ventilation imaging was performed using sub-second 2D MRI with up to 2×2 mm2 in-plane resolution using a clinical 0.35 T MRI scanner without any modifications. This feasibility demonstration paves the way for the use of inhalable diethyl ether as a gaseous contrast agent for pulmonary MRI applications using any clinical MRI scanner.


Assuntos
Meios de Contraste , Pulmão , Imageamento por Ressonância Magnética , Isótopos de Xenônio , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Animais , Pulmão/diagnóstico por imagem , Coelhos , Isótopos de Xenônio/química , Gases/química , Éter/química
2.
Chemistry ; 27(8): 2774-2781, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33112442

RESUMO

Many MRI contrast agents formed with the parahydrogen-induced polarization (PHIP) technique exhibit biocompatible profiles. In the context of respiratory imaging with inhalable molecular contrast agents, the development of nonflammable contrast agents would nonetheless be highly beneficial for the biomedical translation of this sensitive, high-throughput and affordable hyperpolarization technique. To this end, we assess the hydrogenation kinetics, the polarization levels and the lifetimes of PHIP hyperpolarized products (acids, ethers and esters) at various degrees of fluorine substitution. The results highlight important trends as a function of molecular structure that are instrumental for the design of new, safe contrast agents for in vivo imaging applications of the PHIP technique, with an emphasis on the highly volatile group of ethers used as inhalable anesthetics.


Assuntos
Meios de Contraste/química , Incêndios/prevenção & controle , Hidrogênio/química , Imageamento por Ressonância Magnética , Hidrogenação , Estrutura Molecular
3.
Chemistry ; 26(60): 13621-13626, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32667687

RESUMO

The growing interest in magnetic resonance imaging (MRI) for assessing regional lung function relies on the use of nuclear spin hyperpolarized gas as a contrast agent. The long gas-phase lifetimes of hyperpolarized 129 Xe make this inhalable contrast agent acceptable for clinical research today despite limitations such as high cost, low throughput of production and challenges of 129 Xe imaging on clinical MRI scanners, which are normally equipped with proton detection only. We report on low-cost and high-throughput preparation of proton-hyperpolarized diethyl ether, which can be potentially employed for pulmonary imaging with a nontoxic, simple, and sensitive overall strategy using proton detection commonly available on all clinical MRI scanners. Diethyl ether is hyperpolarized by pairwise parahydrogen addition to vinyl ethyl ether and characterized by 1 H NMR spectroscopy. Proton polarization levels exceeding 8 % are achieved at near complete chemical conversion within seconds, causing the activation of radio amplification by stimulated emission radiation (RASER) throughout detection. Although gas-phase T1 relaxation of hyperpolarized diethyl ether (at partial pressure of 0.5 bar) is very efficient, with T1 of ca. 1.2 second, we demonstrate that, at low magnetic fields, the use of long-lived singlet states created via pairwise parahydrogen addition extends the relaxation decay by approximately threefold, paving the way to bioimaging applications and beyond.

4.
Angew Chem Int Ed Engl ; 59(22): 8654-8660, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32207871

RESUMO

Radio amplification by stimulated emission of radiation (RASER) was recently discovered in a low-field NMR spectrometer incorporating a highly specialized radio-frequency resonator, where a high degree of proton-spin polarization was achieved by reversible parahydrogen exchange. RASER activity, which results from the coherent coupling between the nuclear spins and the inductive detector, can overcome the limits of frequency resolution in NMR. Here we show that this phenomenon is not limited to low magnetic fields or the use of resonators with high-quality factors. We use a commercial bench-top 1.4 T NMR spectrometer in conjunction with pairwise parahydrogen addition producing proton-hyperpolarized molecules in the Earth's magnetic field (ALTADENA condition) or in a high magnetic field (PASADENA condition) to induce RASER without any radio-frequency excitation pulses. The results demonstrate that RASER activity can be observed on virtually any NMR spectrometer and measures most of the important NMR parameters with high precision.

5.
Anal Chem ; 91(7): 4741-4746, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30855132

RESUMO

NMR spectroscopy and imaging (MRI) are two of the most important methods to study structure, function, and dynamics from atom to organism scale. NMR approaches often suffer from an insufficient sensitivity, which, however, can be transiently boosted using hyperpolarization techniques. One of these techniques is parahydrogen-induced polarization, which has been used to produce catalyst-free hyperpolarized propane gas with proton polarization that is 3 orders of magnitude greater than equilibrium thermal polarization at a 1.5 T field of a clinical MRI scanner. Here we show that more than 0.3 L of hyperpolarized propane gas can be produced in 2 s. This production rate is more than an order of magnitude greater than that demonstrated previously, and the reported production rate is comparable to that employed for in-human MRI using HP noble gas (e.g., 129Xe) produced via a spin exchange optical pumping (SEOP) hyperpolarization technique. We show that high polarization values can be retained despite the significant increase in the production rate of hyperpolarized propane. The enhanced signals of produced hyperpolarized propane gas were revealed by stopped-flow MRI visualization at 4.7 T. Achieving this high production rate enables the future use of this compound (already approved for unlimited use in foods by the corresponding regulating agencies, e.g., FDA in the USA, and more broadly as an E944 food additive) as a new inhalable contrast agent for diagnostic detection via MRI.


Assuntos
Imageamento por Ressonância Magnética , Propano/metabolismo , Gases/análise , Gases/metabolismo , Humanos , Propano/análise
6.
J Am Chem Soc ; 140(26): 8128-8137, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29847727

RESUMO

Oxygen electrocatalysis plays a critical role in the efficiency of important energy conversion and storage systems. While many efforts have focused on designing efficient electrocatalysts for these processes, optimal catalysts that are inexpensive, active, selective, and stable are still being searched. Nonstoichiometric, mixed-metal oxides present a promising group of electrocatalysts for these processes due to the versatility of the surface composition and fast oxygen conducting properties. Herein, we demonstrate, using a combination of theoretical and experimental studies, the ability to develop design principles that can be used to engineer oxygen electrocatalysis activity of layered, mixed ionic-electronic conducting Ruddlesden-Popper (R-P) oxides. We show that a density function theory (DFT) derived descriptor, O2 binding energy on a surface oxygen vacancy, can be effective in identifying efficient R-P oxide structures for oxygen reduction reaction (ORR). Using a controlled synthesis method, well-defined nanostructures of R-P oxides are obtained, which along with thermochemical and electrochemical activity studies are used to validate the design principles. This has led to the identification of a highly active ORR electrocatalyst, nanostructured Co-doped lanthanum nickelate oxide, which when incorporated in solid oxide fuel cell cathodes significantly enhances the performance at intermediate temperatures (∼550 °C), while maintaining long-term stability. The reported findings demonstrate the effectiveness of the developed design principles to engineer mixed ionic-electronic conducting oxides for efficient oxygen electrocatalysis, and the potential of nanostructured Co-doped lanthanum nickelate oxides as promising catalysts for oxygen electrocatalysis.

7.
J Phys Chem A ; 122(38): 7523-7531, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30165738

RESUMO

The UV photodissociation of isoxazole (c-C3H3NO) is studied in this work by chirped-pulse Fourier transform mm-wave spectroscopy in a pulsed uniform Laval flow. This approach offers a number of advantages over traditional spectroscopic detection methods due to its broadband, sub-MHz resolution, and fast-acquisition capabilities. In coupling this technique with a quasi-uniform Laval flow, we are able to obtain product branching fractions in the 193 nm photodissociation of isoxazole. Five dissociation channels are explored through direct detection of seven different photoproducts. These species and their respective branching fractions (%) include the following: HCN (53.8 ± 1.7), CH3CN (23.4 ± 6.8), HCO (9.5 ± 2.3), CH2CN (7.8 ± 2.9), CH2CO (3.8 ± 0.9), HCCCN (0.9 ± 0.2), and HNC (0.8 ± 0.2). Guided by previous electronic structure and dynamics simulations, we are able to elucidate the dissociation dynamics that govern the final product branching fractions observed in this work, which differ significantly from previous reports on the thermal decomposition of isoxazole. Interestingly, both direct and indirect dynamics contribute to its dissociation, and clear signatures of both are manifested in the relative branching ratios obtained. Consistent with previous studies on the unimolecular dissociation of isoxazole, our findings also suggest the importance of the open-shell singlet diradicaloid species vinylnitrene in the dissociation dynamics, regardless of the initially populated excited state. This work, taken together with previous investigations, provides a global picture of the complex dissociation pathways involved in the photodissociation of isoxazole.

8.
J Chem Phys ; 141(21): 214203, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25481137

RESUMO

This second paper in a series of two reports on the performance of a new instrument for studying chemical reaction dynamics and kinetics at low temperatures. Our approach employs chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy to probe photolysis and bimolecular reaction products that are thermalized in pulsed uniform flows. Here we detail the development and testing of a new K(a)-band CP-FTMW spectrometer in combination with the pulsed flow system described in Paper I [J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. B. Park, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 154202 (2014)]. This combination delivers broadband spectra with MHz resolution and allows monitoring, on the µs timescale, of the appearance of transient reaction products. Two benchmark reactive systems are used to illustrate and characterize the performance of this new apparatus: the photodissociation of SO2 at 193 nm, for which the vibrational populations of the SO product are monitored, and the reaction between CN and C2H2, for which the HCCCN product is detected in its vibrational ground state. The results show that the combination of these two well-matched techniques, which we refer to as chirped-pulse in uniform flow, also provides insight into the vibrational and rotational relaxation kinetics of the nascent reaction products. Future directions are discussed, with an emphasis on exploring the low temperature chemistry of complex polyatomic systems.

9.
ACS Sens ; 8(10): 3845-3854, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37772716

RESUMO

Hyperpolarized magnetic resonance imaging (MRI) contrast agents are revolutionizing the field of biomedical imaging. Hyperpolarized Xe-129 was recently FDA approved as an inhalable MRI contrast agent for functional lung imaging sensing. Despite success in research settings, modern Xe-129 hyperpolarizers are expensive (up to $1M), large, and complex to site and operate. Moreover, Xe-129 sensing requires specialized MRI hardware that is not commonly available on clinical MRI scanners. Here, we demonstrate that proton-hyperpolarized propane gas can be produced on demand using a disposable, hand-held, clinical-scale hyperpolarizer via parahydrogen-induced polarization, which relies on parahydrogen as a source of hyperpolarization. The device consists of a heterogeneous catalytic reactor connected to a gas mixture storage can containing pressurized hyperpolarization precursors: propylene and parahydrogen (10 bar total pressure). Once the built-in flow valve of the storage can is actuated, the precursors are ejected from the can into a reactor, and a stream of hyperpolarized propane gas is ejected from the reactor. Robust operation of the device is demonstrated for producing proton sensing polarization of 1.2% in a wide range of operational pressures and gas flow rates. We demonstrate that the propylene/parahydrogen gas mixture can retain potency for days in the storage can with a monoexponential decay time constant of 6.0 ± 0.5 days, which is limited by the lifetime of the parahydrogen singlet spin state in the storage container. The utility of the produced sensing agent is demonstrated for phantom imaging on a 3 T clinical MRI scanner located 100 miles from the agent/device preparation site and also for ventilation imaging of excised pig lungs using a 0.35 T clinical MRI scanner. The cost of the device components is less than $35, which we envision can be reduced to less than $5 for mass-scale production. The hyperpolarizer device can be reused, recycled, or disposed.


Assuntos
Propano , Prótons , Animais , Suínos , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Gases , Meios de Contraste , Pulmão/diagnóstico por imagem
10.
J Magn Reson ; 322: 106815, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33423756

RESUMO

In a RASER (Radio-frequency Amplification by Stimulated Emission of Radiation), the fast relaxing electromagnetic modes of an LC resonator are enslaved by the slow nuclear spin motion, whose coherence decays with the transverse relaxation rate γm=1/T2∗. Such a system obeys the slaving principle, mathematically identical with the adiabatic elimination procedure, leading to multi-mode RASER equations. If the pumping rate of nuclear spin polarization Γ>>γm, a second adiabatic elimination process applies and the spectral properties of the RASER can be predicted. The resulting model is similar to the model of two non-linear coupled oscillators and predicts the observed RASER phenomena, including frequency combs and mode collapse. If the second adiabatic elimination is not applicable, mode collapse is completely absent and successive period doubling processes and chaos occur at very high population inversions. We compare these theoretical predictions with experimental results from a PHIP (Para-Hydrogen Induced Polarization) pumped 1H RASER. Moreover, in SABRE (Signal Amplification By Reversible Exchange) pumped 1H experiments, RASER revivals are observed long after the parahydrogen pumping source has been switched off. All these findings shed light onto the links between NMR spectroscopy, RASER physics, synergetics and chaos theory. Several new applications are envisioned in the fields of quantum sensor technology, structure investigation or magnetic resonance imaging (MRI).

11.
J Phys Chem C Nanomater Interfaces ; 123(18): 11734-11744, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31798763

RESUMO

We report a systematic study of relaxation dynamics of hyperpolarized (HP) propane and HP propane-d6 prepared by heterogeneous pairwise parahydrogen addition to propylene and propylene-d6 respectively. Long-lived spin states (LLS) created for these molecules at the low magnetic field of 0.0475 T were employed for this study. The parahydrogen-induced overpopulation of a HP propane LLS decays exponentially with time constant (TLLS) approximately 3-fold greater than the corresponding T1 values. Both TLLS and T1 increase linearly with propane pressure in the range from 1 atm (the most biomedically relevant conditions for pulmonary MRI) to 5 atm. The TLLS value of HP propane gas at 1 atm is ~3 s. Deuteration of the substrate (propylene-d6) yields hyperpolarized propane-d6 gas with TLLS values approximately 20% shorter than those of hyperpolarized fully protonated propane gas, indicating that deuteration does not benefit the lifetime of the LLS HP state. The use of pH2 or Xe/N2 buffering gas during heterogeneous hydrogenation reaction (leading to production of 100% HP propane (no buffering gas) versus 43% HP propane gas (with 57% buffering gas) composition mixtures) results in (i) no significant changes in T1, (ii) decrease of TLLS values (by 35±7% and 8±7% respectively); and (iii) an increase of the polarization levels of HP propane gas with a propane concentration decrease (by 1.6±0.1-fold and 1.4±0.1-fold respectively despite the decrease in TLLS, which leads to disproportionately greater polarization losses during HP gas transport). Moreover, we demonstrate the feasibility of HP propane cryo-collection (which can be potentially useful for preparing larger amounts of concentrated HP propane, when buffering gas is employed), and TLLS of liquefied HP propane reaches 14.7 seconds, which is greater than the TLLS value of HP propane gas at any pressure studied. Finally, we have explored the utility of using a partial Spin-Lock Induced Crossing (SLIC) radio frequency (RF) pulse sequence for converting the overpopulated LLS into observable 1H nuclear magnetization at low magnetic field. We find that (i) the bulk of the overpopulated LLS is retained even when the optimal or near-optimal values of SLIC pulse duration are employed, and (ii) the overpopulated LLS of propane is also relatively immune to strong RF pulses-thereby, indicating that LLS is highly suitable as a spin-polarization reservoir in the context of NMR/MRI detection applications. The presented findings may be useful for improving the levels of polarization of HP propane produced by HET-PHIP via the use of an inert buffer gas; increasing the lifetime of the HP state during preparation and storage; and developing efficient approaches for ultrafast MR imaging of HP propane in the context of biomedical applications of HP propane gas, including its potential use as an inhalable contrast agent.

12.
J Phys Chem Lett ; 10(15): 4229-4236, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291106

RESUMO

We report on an extension of the quasi-resonance (QUASR) pulse sequence used for signal amplification by reversible exchange (SABRE), showing that we may target distantly J-coupled 19F-spins. Polarization transfer from the parahydrogen-derived hydrides to the 19F nucleus is accomplished via weak five-bond J-couplings using a shaped QUASR radio frequency pulse at a 0.05 T magnetic field. The net result is the direct generation of hyperpolarized 19F z-magnetization, derived from the parahydrogen singlet order. An accumulation of 19F polarization on the free ligand is achieved with subsequent repetition of this pulse sequence. The hyperpolarized 19F signal exhibits clear dependence on the pulse length, irradiation frequency, and delay time in a manner similar to that reported for 15N QUASR-SABRE. Moreover, the hyperpolarized 19F signals of 3-19F-14N-pyridine and 3-19F-15N-pyridine isotopologues are similar, suggesting that (i) polarization transfer via QUASR-SABRE is irrespective of the nitrogen isotopologue and (ii) the presence or absence of the spin-1/2 15N nucleus has no impact on the efficiency of QUASR-SABRE polarization transfer. Although optimization of polarization transfer efficiency to 19F (P19F ≈ 0.1%) was not the goal of this study, we show that high-field SABRE can be efficient and broadly applicable for direct hyperpolarization of 19F spins.

13.
J Phys Chem Lett ; 9(20): 6136-6142, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30284835

RESUMO

Here we present the feasibility of NMR signal amplification by reversible exchange (SABRE) using radio frequency irradiation at low magnetic field (0.05 T) in the regime where the chemical shifts of free and catalyst-bound species are similar. In SABRE, the 15N-containing substrate and parahydrogen perform simultaneous chemical exchange on an iridium hexacoordinate complex. A shaped spin-lock induced crossing (SLIC) radio frequency pulse sequence followed by a delay is applied at quasi-resonance (QUASR) conditions of 15N spins of a 15N-enriched substrate. As a result of this pulse sequence application, 15N z-magnetization is created from the spin order of parahydrogen-derived hyperpolarized hydrides. The repetition of the pulse sequence block consisting of a shaped radio frequency pulse and the delay leads to the buildup of 15N magnetization. The modulation of this effect by the irradiation frequency, pulse duration and amplitude, delay duration, and number of pumping cycles was demonstrated. Pyridine-15N, acetonitrile-15N, and metronidazole-15N2-13C2 substrates were studied representing three classes of compounds (five- and six-membered heterocycles and nitrile), showing the wide applicability of the technique. Metronidazole-15N2-13C2 is an FDA-approved antibiotic that can be injected in large quantities, promising noninvasive and accurate hypoxia sensing. The 15N hyperpolarization levels attained with QUASR-SABRE on metronidazole-15N2-13C2 were more than 2-fold greater than those with SABRE-SHEATH (SABRE in shield enables alignment transfer to heteronuclei), demonstrating that QUASR-SABRE can deliver significantly more efficient means of SABRE hyperpolarization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa