Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(15): 153401, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36269954

RESUMO

We explore the interaction between two trapped ions mediated by a surrounding quantum degenerate Bose or Fermi gas. Using perturbation theory valid for weak atom-ion interaction, we show analytically that the interaction mediated by a Bose gas has a power-law behavior for large distances whereas it has a Yukawa form for intermediate distances. For a Fermi gas, the mediated interaction is given by a power law for large density and by a Ruderman-Kittel-Kasuya-Yosida form for low density. For strong atom-ion interaction, we use a diagrammatic theory to demonstrate that the mediated interaction can be a significant addition to the bare Coulomb interaction between the ions, when an atom-ion bound state is close to threshold. Finally, we show that the induced interaction leads to substantial and observable shifts in the ion phonon frequencies.

2.
Phys Rev Lett ; 126(23): 230404, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170163

RESUMO

We observe monopole oscillations in a mixture of Bose-Einstein condensates, where the usually dominant mean-field interactions are canceled. In this case, the system is governed by the next-order Lee-Huang-Yang (LHY) correction to the ground state energy, which describes the effect of quantum fluctuations. Experimentally such a LHY fluid is realized by controlling the atom numbers and interaction strengths in a ^{39}K spin mixture confined in a spherical trap potential. We measure the monopole oscillation frequency as a function of the LHY interaction strength as proposed recently by Jrgensen et al. [Phys. Rev. Lett. 121, 173403 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.173403] and find excellent agreement with simulations of the complete experiment including the excitation procedure and inelastic losses. This confirms that the system and its collective behavior are initially dominated by LHY interactions. Moreover, the monopole oscillation frequency is found to be stable against variations of the involved scattering lengths in a broad region around the ideal values, confirming the stabilizing effect of the LHY interaction. These results pave the way for using the nonlinearity provided by the LHY term in quantum simulation experiments and for investigations beyond the LHY regime.

3.
Phys Rev Lett ; 125(24): 240504, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412075

RESUMO

We theoretically propose and experimentally demonstrate the use of motional sidebands in a trapped ensemble of ^{87}Rb atoms to engineer tunable long-range XXZ spin models. We benchmark our simulator by probing a ferromagnetic to paramagnetic dynamical phase transition in the Lipkin-Meshkov-Glick model, a collective XXZ model plus additional transverse and longitudinal fields, via Rabi spectroscopy. We experimentally reconstruct the boundary between the dynamical phases, which is in good agreement with mean-field theoretical predictions. Our work introduces new possibilities in quantum simulation of anisotropic spin-spin interactions and quantum metrology enhanced by many-body entanglement.

4.
Phys Rev Lett ; 121(17): 173403, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411960

RESUMO

Understanding the effects of interactions in complex quantum systems beyond the mean-field paradigm constitutes a fundamental problem in physics. We show how the atom numbers and interactions in a Bose-Bose mixture can be tuned to cancel mean-field interactions completely. The resulting system is entirely governed by quantum fluctuations-specifically the Lee-Huang-Yang correlations. We derive an effective one-component Gross-Pitaevskii equation for this system, which is shown to be very accurate by comparison with a full two-component description. This allows us to show how the Lee-Huang-Yang correlation energy can be accurately measured using two powerful probes of atomic gases: collective excitations and radio-frequency spectroscopy. Importantly, the behavior of the system is robust against deviations from the atom number and interaction criteria for canceling the mean-field interactions. This shows that it is feasible to realize a setting where quantum fluctuations are not masked by mean-field forces, allowing investigations of the Lee-Huang-Yang correction at unprecedented precision.

5.
Phys Rev Lett ; 117(5): 055302, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517777

RESUMO

The problem of an impurity particle moving through a bosonic medium plays a fundamental role in physics. However, the canonical scenario of a mobile impurity immersed in a Bose-Einstein condensate (BEC) has not yet been realized. Here, we use radio frequency spectroscopy of ultracold bosonic ^{39}K atoms to experimentally demonstrate the existence of a well-defined quasiparticle state of an impurity interacting with a BEC. We measure the energy of the impurity both for attractive and repulsive interactions, and find excellent agreement with theories that incorporate three-body correlations, both in the weak-coupling limits and across unitarity. The spectral response consists of a well-defined quasiparticle peak at weak coupling, while for increasing interaction strength, the spectrum is strongly broadened and becomes dominated by the many-body continuum of excited states. Crucially, no significant effects of three-body decay are observed. Our results open up exciting prospects for studying mobile impurities in a bosonic environment and strongly interacting Bose systems in general.

6.
Phys Rev Lett ; 112(15): 155304, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785048

RESUMO

Recent experiments demonstrate the production of many thousands of neutral atoms entangled in their spin degrees of freedom. We present a criterion for estimating the amount of entanglement based on a measurement of the global spin. It outperforms previous criteria and applies to a wider class of entangled states, including Dicke states. Experimentally, we produce a Dicke-like state using spin dynamics in a Bose-Einstein condensate. Our criterion proves that it contains at least genuine 28-particle entanglement. We infer a generalized squeezing parameter of -11.4(5) dB.

7.
Rev Sci Instrum ; 88(3): 036101, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372402

RESUMO

We describe the construction and performance of a polarimeter based on a quarter-wave plate rotated by a model airplane motor. The motor rotates at a high angular frequency of ω∼2π×160 Hz, which enables the polarimeter to monitor the polarization state of an incident beam of light in real-time. We show that a simple analysis of the polarimeter signal using the fast Fourier transform on a standard digital oscilloscope provides an excellent measure of the polarization state for many laboratory applications. The polarimeter is straightforward to construct, portable, and features a high-dynamic range, facilitating a wide range of optics laboratory tasks that require free-space or fiber-based polarization analysis.

8.
Rev Sci Instrum ; 84(8): 083105, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24007051

RESUMO

We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa