RESUMO
Quantum spin liquids (QSLs) are topologically ordered states of matter that host fractionalized excitations. A particular route towards a QSL is via strongly bond-dependent interactions on the hexagonal lattice. A number of Ru- and Ir-based candidate Kitaev QSL materials have been pursued, but all have appreciable non-Kitaev interactions. Using time-domain terahertz spectroscopy, we observed a broad magnetic continuum over a wide range of temperatures and fields in the honeycomb cobalt-based magnet BaCo2(AsO4)2, which has been proposed to be a more ideal version of a Kitaev QSL. Applying an in-plane magnetic field of ~0.5 T suppresses the magnetic order, and at higher fields, applying the field gives rise to a spin-polarized state. Under a 4 T magnetic field that was oriented principally out of plane, a broad magnetic continuum was observed that may be consistent with a field-induced QSL. Our results indicate BaCo2(AsO4)2 is a promising QSL candidate.
RESUMO
We present a new method for high precision measurements of polarization rotation in the frequency range from 0.2 to 2.2 THz using a fiber coupled time-domain THz spectrometer. A free standing wire-grid polarizer splits THz light into orthogonal components that are then measured by two separate detectors simultaneously. We theoretically model the uncertainties introduced by optical component non-idealities and predict that we may expect to achieve accuracies of 0.8% when anti-symmetrizing the response with respect to an applied field. Anti-symmetrization improves accuracy by more than four orders of magnitude. We demonstrate this method on a 2D electron gas in magnetic field and show that we achieve a precision of 20 µrad (1.1 mdeg) for small polarization rotation angles. A detailed description of the technique and data analysis procedure is provided, demonstrating its capability to precisely measure polarization states in the 0.2 to 2.2 THz range.
RESUMO
The mechanism of superconductivity in materials with aborted ferroelectricity and its emergence out of a dilute metallic phase in systems like doped SrTiO_{3} is an outstanding issue in condensed matter physics. This dilute metal has anomalous properties that are both similar and different to those found in the normal state of other unconventional superconductors. For instance, T^{2} resistivity can be found at densities that are too small to allow current decay through electron-electron scattering. We have investigated the optical properties of the dilute metallic phase in doped SrTiO_{3} using THz time-domain spectroscopy. At low frequencies the THz response exhibits a Drude-like form as expected for typical metal-like conductivity. We observed the frequency and temperature dependencies to the low energy scattering rate Γ(ω,T)â(âω)^{2}+(pπk_{B}T)^{2} expected in a conventional Fermi liquid. However, we find the lowest known p values of 0.39-0.72. As p is 2 in a canonical Fermi liquid and existing models based on energy dependent elastic scattering bound p from below to 1, our observation lies outside current explanation. Our data also give insight into the high temperature regime and show that the temperature dependence of the resistivity derives in part from strong T dependent mass renormalizations.
RESUMO
Recently developed terahertz (THz) two-dimensional coherent spectroscopy (2DCS) is a powerful technique to obtain materials information in a fashion qualitatively different from other spectroscopies. Here, we utilized THz 2DCS to investigate the THz nonlinear response of conventional superconductor NbN. Using broadband THz pulses as light sources, we observed a third-order nonlinear signal whose spectral components are peaked at twice the superconducting gap energy 2Δ. With narrow-band THz pulses, a THz nonlinear signal was identified at the driving frequency Ω and exhibited a resonant enhancement at temperature when Ω=2Δ. General theoretical considerations show that such a resonance can arise only from a disorder-activated paramagnetic coupling between the light and the electronic current. This proves that the nonlinear THz response can access processes distinct from the diamagnetic Raman-like density fluctuations, which are believed to dominate the nonlinear response at optical frequencies in metals. Our numerical simulations reveal that, even for a small amount of disorder, the Ω=2Δ resonance is dominated by the superconducting amplitude mode over the entire investigated disorder range. This is in contrast to other resonances, whose amplitude-mode contribution depends on disorder. Our findings demonstrate the unique ability of THz 2DCS to explore collective excitations inaccessible in other spectroscopies.
RESUMO
Electrons in solids often adopt complex patterns of chemical bonding driven by the competition between energy gains from covalency and delocalization, and energy costs of double occupation to satisfy Pauli exclusion, with multiple intermediate states in the transition between highly localized, and magnetic, and delocalized, and nonmagnetic limits. Herein, we report a chemical pressure-driven transition from a proper Mn magnetic ordering phase transition to a Mn magnetic phase crossover in EuMn2P2 the limiting end member of the EuMn2X2 (X = Sb, As, P) family of layered materials. This loss of a magnetic ordering occurs despite EuMn2P2 remaining an insulator at all temperatures, and with a phase transition to long-range Eu antiferromagnetic order at TN ≈ 17 K. The absence of a Mn magnetic phase transition contrasts with the formation of long-range Mn order at T ≈ 130 K in isoelectronic EuMn2Sb2 and EuMn2As2. Temperature-dependent specific heat and 31P NMR measurements provide evidence for the development of short-range Mn magnetic correlations from T ≈ 250-100 K, interpreted as a precursor to covalent bond formation. Density functional theory calculations demonstrate an unusual sensitivity of the band structure to the details of the imposed Mn and Eu magnetic order, with an antiferromagnetic Mn arrangement required to recapitulate an insulating state. Our results imply a picture in which long-range Mn magnetic order is suppressed by chemical pressure, but that antiferromagnetic correlations persist, narrowing bands and producing an insulating state.
RESUMO
Topological electronic materials, such as topological insulators, are distinct from trivial materials in the topology of their electronic band structures that lead to robust, unconventional topological states, which could bring revolutionary developments in electronics. This Perspective summarizes developments of topological insulators in various electronic applications including spintronics and magnetoelectronics. We group and analyse several important phenomena in spintronics using topological insulators, including spin-orbit torque, the magnetic proximity effect, interplay between antiferromagnetism and topology, and the formation of topological spin textures. We also outline recent developments in magnetoelectronics such as the axion insulator and the topological magnetoelectric effect observed using different topological insulators.
RESUMO
We observe a wealth of multimagnon bound states in the strongly anisotropic spin-1 triangular antiferromagnet FeI_{2} using time-domain terahertz spectroscopy. These unconventional excitations can arise in ordered magnets due to attractive magnon-magnon interactions and alter their properties. We analyze the energy-magnetic field spectrum via an exact diagonalization method for a dilute gas of interacting magnons and detect up to 4- and 6-magnon bound states, hybridized with single magnons. This zoo of tunable interacting quasiparticles provides a unique platform to study decay and renormalization, reminiscent of the few-body problems found in cold-atom, nuclear, and particle physics.
RESUMO
We investigated the magnetoterahertz response of the Dirac semimetal Cd3As2 and observed a particularly low frequency optical phonon as well as a very prominent and field-sensitive cyclotron resonance. As the cyclotron frequency is tuned with the field to pass through the phonon, the phonon becomes circularly polarized, as shown by a notable splitting in its response to right- and left-hand polarized light. This splitting can be expressed as an effective phonon magnetic moment that is approximately 2.7 times the Bohr magneton, which is almost 4 orders of magnitude larger than ab initio calculations predict for phonon magnetic moments in nonmagnetic insulators. This exceedingly large value is due to the coupling of the phonons to the cyclotron motion and is controlled directly by the electron-phonon coupling constant. This field-tunable circular-polarization-selective coupling provides new functionality for nonlinear optics to create light-induced topological phases in Dirac semimetals.
RESUMO
NiNb_{2}O_{6} is an almost ideal realization of a 1D spin-1 ferromagnetic Heisenberg chain compound with weak unidirectional anisotropy. Using time-domain THz spectroscopy, we measure the low-energy electrodynamic response of NiNb_{2}O_{6} as a function of temperature and external magnetic field. At low temperatures, we find a magnonlike spin excitation, which corresponds to the lowest energy excitation at qâ¼0. At higher temperatures, we unexpectedly observe a temperature-dependent renormalization of the spin-excitation energy, which has a strong dependence on field direction. Using theoretical arguments, exact diagonalizations, and finite temperature dynamical Lanczos calculations, we construct a picture of magnon-magnon interactions that naturally explains the observed renormalization. We show how magnetic field strength and direction may be used to directly tune the sign of the magnon-magnon interaction. This unique scenario is a consequence of the spin-1 nature and has no analog in the more widely studied spin-1/2 systems.
RESUMO
We report strong terahertz (â¼10^{12} Hz) high harmonic generation at room temperature in thin films of Cd_{3}As_{2}, a three-dimensional Dirac semimetal. Third harmonics are detectable with a tabletop light source and can be as strong as 100 V/cm by applying a fundamental field of 6.5 kV/cm inside the film, demonstrating an unprecedented efficiency for terahertz frequency conversion. Our time-resolved terahertz spectroscopy and calculations also clarify the microscopic mechanism of the nonlinearity originating in the coherent acceleration of Dirac electrons in momentum space. Our results provide clear insights for nonlinear currents of Dirac electrons driven by the terahertz field under the influence of scattering, paving the way toward novel devices for high-speed electronics and photonics based on topological semimetals.
RESUMO
SrRuO_{3}, a ferromagnet with an approximately 160 K Curie temperature, exhibits a T^{2}-dependent dc resistivity below ≈30 K. Nevertheless, previous optical studies in the infrared and terahertz range show non-Drude dynamics at low temperatures, which seem to contradict Fermi-liquid predictions. In this work, we measure the low-frequency THz range response of thin films with residual resistivity ratios, ρ_{300K}/ρ_{4K}≈74. At temperatures below 30 K, we find both a sharp zero frequency mode which has a width narrower than k_{B}T/â as well as a broader zero frequency Lorentzian that has at least an order of magnitude larger scattering. Both features have temperature dependences consistent with a Fermi liquid with the wider feature explicitly showing a T^{2} scaling. Above 30 K, there is a crossover to a regime described by a single Drude peak that we believe arises from strong interband electron-electron scattering. Such two channel Drude transport sheds light on reports of the violation of Matthiessen's rule and extreme sensitivity to disorder in metallic ruthenates.
RESUMO
We show that the new technique of terahertz 2D coherent spectroscopy is capable of giving qualitatively new information about fractionalized spin systems. For the prototypical example of the transverse field Ising chain, we demonstrate theoretically that, despite the broad continuum of excitations in linear response, the 2D spectrum contains sharp features that are a coherent signature of a "spinon echo," which gives previously inaccessible information such as the lifetime of the two-spinon excited state. The effects of disorder and finite lifetime, which are practically indistinguishable in the linear optical or neutron response, manifest in dramatically different fashion in the 2D spectra. Our results may be directly applicable to model quasi-1D transverse field Ising chain systems such as CoNb_{2}O_{6}, but the concept can be applied to fractionalized spin systems in general.
RESUMO
Overdoped high-temperature cuprate superconductors have often been understood within the standard BCS framework of superconductivity. However, measurements in a variety of overdoped cuprates indicate that the superfluid density is much smaller than expected from BCS theory and decreases smoothly to zero as the doping is increased. Here, we combine time-domain THz spectroscopy with kHz range mutual inductance measurements on the same overdoped La_{2-x}Sr_{x}CuO_{4} films to determine the total, superfluid, and uncondensed spectral weight as a function of doping. A significant fraction of the carriers remains uncondensed in a wide Drude-like peak as Tâ0, while the superfluid density remains linear in temperature. These observations are seemingly inconsistent with existing, realistic theories of impurity scattering suppressing the superfluid density in a BCS-like d-wave superconductor. Our large measurement frequency range gives us a unique look at the low frequency spectral weight distribution, which may suggest the presence of quantum phase fluctuations as the critical doping is approached.
RESUMO
Pb_{1-x}Sn_{x}Te has been shown to be an interesting tunable topological crystalline insulator system. We present a magnetoterahertz spectroscopic study of thin films of Pb_{0.5}Sn_{0.5}Te. The complex Faraday rotation angle and optical conductivity in the circular basis are extracted without any additional assumptions. Our quantitative measures of the THz response allow us to show that the sample studied contains two types of bulk carriers. One is p type and originates in 3D Dirac bands. The other is n type and appears to be from more conventional 3D bands. These two types of carriers display different cyclotron resonance dispersions. Through simulating the cyclotron resonance of hole carriers, we can determine the Fermi energy and Fermi velocity. Furthermore, the scattering rates of p-type and n-type carriers were found to show opposite field dependences, which can be attributed to their different Landau level broadening behaviors under magnetic field. Our work provides a new way to isolate real topological signatures of bulk states in Dirac and Weyl semimetals.
RESUMO
Epitaxial bilayer films of Bi(110) and Ni host a time-reversal symmetry breaking superconducting order with an unexpectedly high transition temperature T_{c}=4.1 K. Using time-domain THz spectroscopy, we measure the low energy electrodynamic response of a Bi/Ni bilayer thin film from 0.2 to 2 THz as a function of temperature and magnetic field. We analyze the data in the context of a Bardeen-Cooper-Schrieffer-like superconductor with a finite normal-state scattering rate. In a zero magnetic field, all states in the film become fully gapped, providing important constraints into possible pairing symmetries. Our data appear to rule out the odd-frequency pairing that is natural for many ferromagnetic-superconductor interfaces. By analyzing the magnetic field-dependent response in terms of a pair-breaking parameter, we determine that superconductivity develops over the entire bilayer sample which may point to the p-wave like nature of unconventional superconductivity.
RESUMO
It is observed that many thin superconducting films with not too high disorder level (generally R_{N}/â¡<2000 Ω) placed in magnetic field show an anomalous metallic phase where the resistance is low but still finite as temperature goes to zero. Here we report in weakly disordered amorphous InO_{x} thin films that this anomalous metal phase possesses no cyclotron resonance and hence non-Drude electrodynamics. The absence of a finite frequency resonant mode can be associated with a vanishing downstream component of the vortex current parallel to the supercurrent and an emergent particle-hole symmetry of this metal, which establishes its non-Fermi-liquid character.
RESUMO
The symmetric splitting of two spin-wave branches in an antiferromagnetic resonance (AFR) experiment has been an essential measurement of antiferromagnets for over half a century. In this work, circularly polarized time-domain THz spectroscopy experiments performed on the low symmetry multiferroic hexagonal HoMnO_{3} reveal an AFR of the Mn sublattice to split asymmetrically in an applied magnetic field, with an ≈50% difference in g factors between the high and low energy branches of this excitation. The temperature dependence of the g factors, including a drastic renormalization at the Ho spin ordering temperature, reveals this asymmetry to unambiguously stem from Ho-Mn interactions. Theoretical calculations demonstrate that the AFR asymmetry is not explained by conventional Ho-Mn exchange mechanisms alone and is only reproduced if quartic spin interactions are also included in the spin Hamiltonian. Our results provide a paradigm for the optical study of such novel interactions in hexagonal manganites and low symmetry antiferromagnets in general.
RESUMO
We report on optical reflectivity experiments performed on Cd_{3}As_{2} over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorption in the quantum limit implies that we are probing massless Kane electrons rather than symmetry-protected 3D Dirac particles. The latter may appear at a smaller energy scale and are not directly observed in our infrared experiments.
RESUMO
Material defects remain as the main bottleneck to the progress of topological insulators (TIs). In particular, efforts to achieve thin TI samples with dominant surface transport have always led to increased defects and degraded mobilities, thus making it difficult to probe the quantum regime of the topological surface states. Here, by utilizing a novel buffer layer scheme composed of an In2Se3/(Bi0.5In0.5)2Se3 heterostructure, we introduce a quantum generation of Bi2Se3 films with an order of magnitude enhanced mobilities than before. This scheme has led to the first observation of the quantum Hall effect in Bi2Se3.