RESUMO
Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater ('parr') stage to the migratory stage where they descend streams and enter salt water ('smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 °C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5 days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.
Assuntos
Migração Animal , Mudança Climática , Salmo salar/fisiologia , Animais , Clorofila/análise , Clorofila A , Oceanos e Mares , Rios , Temperatura , Fatores de TempoRESUMO
Tetracapsuloides bryosalmonae is a myxozoan parasite and the causative agent of proliferative kidney disease (PKD), a serious, temperature-dependent and emerging disease affecting salmonid fish. It was first identified in Iceland in 2008, from Arctic charr inhabiting a shallow lowland lake. The aim of this study was to investigate the distribution and prevalence of macroscopic and subclinical T. bryosalmonae infections in Icelandic salmonids and compare different time periods, in context with depths, volumes, altitudes and areas of the lakes and fish age. Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) from 34 lakes, sampled between 1994-1998 and 2009-2017, were examined for macroscopic signs of PKD (n = 2,151) and the presence of T. bryosalmonae infections (n = 1,424). In the earlier period, 43% of lakes (10/23) harboured T. bryosalmonae -infected fish. The mean prevalence in those lakes was 62.1%, being most common in shallow lowland lakes whilst deeper lakes at high altitudes were all free from infection. Only a single fish from one lake showed macroscopic signs of PKD, a shallow lowland lake in southwestern Iceland. In the latter period, T. bryosalmonae was found in 16/18 lakes studied (89%), with a mean prevalence of 78-79% (excluding T.b. free lakes), being most common in the smaller, shallower lakes at lower alttudes. Macroscopic signs of PKD were observed in 11 of 18 of the lakes studied (61%) with prevalences up to 67%, most common in younger fish inhabiting small shallow lowland lakes. The results indicate that the distribution of T. bryosalmonae and the presence of PKD in Iceland have increased over the last few decades. The disease was almost non-existent in the 1990s but has become very common during the last decade or two. With further water temperature increases, as predicted by climate models, PKD is likely to increasingly affect wild salmonid populations in Iceland.