Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Infect Dis ; 229(2): 558-566, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37889572

RESUMO

Congenital toxoplasmosis in humans and in other mammalian species, such as small ruminants, is a well-known cause of abortion and fetal malformations. The calcium-dependent protein kinase 1 (CDPK1) inhibitor BKI-1748 has shown a promising safety profile for its use in humans and a good efficacy against Toxoplasma gondii infection in vitro and in mouse models. Ten doses of BKI-1748 given every other day orally in sheep at 15 mg/kg did not show systemic or pregnancy-related toxicity. In sheep experimentally infected at 90 days of pregnancy with 1000 TgShSp1 oocysts, the BKI-1748 treatment administered from 48 hours after infection led to complete protection against abortion and congenital infection. In addition, compared to infected/untreated sheep, treated sheep showed a drastically lower rectal temperature increase and none showed IgG seroconversion throughout the study. In conclusion, BKI-1748 treatment in pregnant sheep starting at 48 hours after infection was fully effective against congenital toxoplasmosis.


Assuntos
Aborto Espontâneo , Doenças Transmissíveis , Toxoplasma , Toxoplasmose Congênita , Toxoplasmose , Gravidez , Humanos , Feminino , Camundongos , Ovinos , Animais , Toxoplasmose Congênita/tratamento farmacológico , Toxoplasmose Congênita/prevenção & controle , Mamíferos
2.
Antimicrob Agents Chemother ; 67(4): e0142522, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920244

RESUMO

Recent advances on the development of bumped kinase inhibitors for treatment of cryptosporidiosis have focused on the 5-aminopyrazole-4-carboxamide scaffold, due to analogs that have less hERG inhibition, superior efficacy, and strong in vitro safety profiles. Three compounds, BKI-1770, -1841, and -1708, showed strong efficacy in C. parvum infected mice. Both BKI-1770 and BKI-1841 had efficacy in the C. parvum newborn calf model, reducing diarrhea and oocyst excretion. However, both compounds caused hyperflexion of the limbs seen as dropped pasterns. Toxicity experiments in rats and calves dosed with BKI-1770 showed enlargement of the epiphyseal growth plate at doses only slightly higher than the efficacious dose. Mice were used as a screen to check for bone toxicity, by changes to the tibia epiphyseal growth plate, or neurological causes, by use of a locomotor activity box. These results showed neurological effects from both BKI-1770 and BKI-1841 and bone toxicity in mice from BKI-1770, indicating one or both effects may be contributing to toxicity. However, BKI-1708 remains a viable treatment candidate for further evaluation as it showed no signs of bone toxicity or neurological effects in mice.


Assuntos
Antineoplásicos , Antiprotozoários , Criptosporidiose , Cryptosporidium parvum , Animais , Bovinos , Camundongos , Ratos , Criptosporidiose/tratamento farmacológico , Antiprotozoários/farmacologia , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Oocistos
3.
Drug Metab Dispos ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714715

RESUMO

Physiologically based pharmacokinetic (PBPK) modeling is a physiologically relevant approach that integrates drug-specific and system parameters to generate pharmacokinetic predictions for target populations. It has gained immense popularity for drug-drug interaction, organ impairment, and special population studies over the past two decades. However, an application of PBPK modeling with great potential remains rather overlooked - prediction of diarrheal disease impact on oral drug pharmacokinetics. Oral drug absorption is a complex process involving the interplay between physicochemical characteristics of the drug and physiological conditions in the gastrointestinal tract. Diarrhea, a condition common to numerous diseases impacting many worldwide, is associated with physiological changes in many processes critical to oral drug absorption. In this review, we outline key processes governing oral drug absorption, provide a high-level overview of key parameters for modeling oral drug absorption in PBPK models, examine how diarrheal diseases may impact these processes based on literature findings, illustrate the clinical relevance of diarrheal disease impact on oral drug absorption, and discuss the potential and challenges of applying PBPK modeling in predicting disease impacts. Significance Statement Statement Pathophysiological changes resulting from diarrheal diseases can alter important factors governing oral drug absorption, contributing to suboptimal drug exposure and treatment failure. Physiologically based pharmacokinetic (PBPK) modeling is an in silico approach that has been increasingly adopted for drug-drug interaction potential, organ impairment, and special population assessment. This minireview highlights the potential and challenges of using PBPK modeling as a tool to improve our understanding of how diarrheal diseases impact oral drug pharmacokinetics.

4.
Antimicrob Agents Chemother ; 66(1): e0156021, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748385

RESUMO

Infection with Cryptosporidium spp. can cause severe diarrhea, leading to long-term adverse impacts and even death in malnourished children and immunocompromised patients. The only FDA-approved drug for treating cryptosporidiosis, nitazoxanide, has limited efficacy in the populations impacted the most by the diarrheal disease, and safe, effective treatment options are urgently needed. Initially identified by a large-scale phenotypic screening campaign, the antimycobacterial therapeutic clofazimine demonstrated great promise in both in vitro and in vivo preclinical models of Cryptosporidium infection. Unfortunately, a phase 2a clinical trial in HIV-infected adults with cryptosporidiosis did not identify any clofazimine treatment effect on Cryptosporidium infection burden or clinical outcomes. To explore whether clofazimine's lack of efficacy in the phase 2a trial may have been due to subtherapeutic clofazimine concentrations, a pharmacokinetic/pharmacodynamic modeling approach was undertaken to determine the relationship between clofazimine in vivo concentrations and treatment effects in multiple preclinical infection models. Exposure-response relationships were characterized using Emax and logistic models, which allowed predictions of efficacious clofazimine concentrations for the control and reduction of disease burden. After establishing exposure-response relationships for clofazimine treatment of Cryptosporidium infection in our preclinical model studies, it was unmistakable that the clofazimine levels observed in the phase 2a study participants were well below concentrations associated with anti-Cryptosporidium efficacy. Thus, despite a dosing regimen above the highest doses recommended for mycobacterial therapy, it is very likely the lack of treatment effect in the phase 2a trial was at least partially due to clofazimine concentrations below those required for efficacy against cryptosporidiosis. It is unlikely that clofazimine will provide a remedy for the large number of cryptosporidiosis patients currently without a viable treatment option unless alternative, safe clofazimine formulations with improved oral absorption are developed. (This study has been registered in ClinicalTrials.gov under identifier NCT03341767.).


Assuntos
Antiprotozoários , Criptosporidiose , Cryptosporidium , Adulto , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Criança , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Criptosporidiose/tratamento farmacológico , Diarreia/tratamento farmacológico , Humanos
5.
J Infect Dis ; 220(7): 1188-1198, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31180118

RESUMO

Recent studies have illustrated the burden Cryptosporidium infection places on the lives of malnourished children and immunocompromised individuals. Treatment options remain limited, and efforts to develop a new therapeutic are currently underway. However, there are unresolved questions about the ideal pharmacokinetic characteristics of new anti-Cryptosporidium therapeutics. Specifically, should drug developers optimize therapeutics and formulations to increase drug exposure in the gastrointestinal lumen, enterocytes, or systemic circulation? Furthermore, how should researchers interpret data suggesting their therapeutic is a drug efflux transporter substrate? In vivo drug transporter-mediated alterations in efficacy are well recognized in multiple disease areas, but the impact of intestinal transporters on therapeutic efficacy against enteric diseases has not been established. Using multiple in vitro models and a mouse model of Cryptosporidium infection, we characterized the effect of P-glycoprotein efflux on bumped kinase inhibitor pharmacokinetics and efficacy. Our results demonstrated P-glycoprotein decreases bumped kinase inhibitor enterocyte exposure, resulting in reduced in vivo efficacy against Cryptosporidium. Furthermore, a hollow fiber model of Cryptosporidium infection replicated the in vivo impact of P-glycoprotein on anti-Cryptosporidium efficacy. In conclusion, when optimizing drug candidates targeting the gastrointestinal epithelium or gastrointestinal epithelial infections, drug developers should consider the adverse impact of active efflux transporters on efficacy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Criptosporidiose/tratamento farmacológico , Cryptosporidium/efeitos dos fármacos , Enteropatias Parasitárias/tratamento farmacológico , Naftalenos/metabolismo , Naftalenos/uso terapêutico , Piperidinas/metabolismo , Piperidinas/uso terapêutico , Pirazóis/metabolismo , Pirazóis/uso terapêutico , Pirimidinas/metabolismo , Pirimidinas/uso terapêutico , Quinolinas/metabolismo , Quinolinas/uso terapêutico , Animais , Transporte Biológico Ativo , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Criptosporidiose/parasitologia , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/parasitologia , Feminino , Absorção Gastrointestinal/efeitos dos fármacos , Humanos , Interferon gama/genética , Camundongos , Camundongos Knockout , Naftalenos/química , Piperidinas/química , Pirazóis/química , Pirimidinas/química , Quinolinas/química , Resultado do Tratamento
6.
J Infect Dis ; 219(9): 1464-1473, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30423128

RESUMO

Bumped kinase inhibitors (BKIs) have been shown to be potent inhibitors of Toxoplasma gondii calcium-dependent protein kinase 1. Pyrazolopyrimidine and 5-aminopyrazole-4-carboxamide scaffold-based BKIs are effective in acute and chronic experimental models of toxoplasmosis. Through further exploration of these 2 scaffolds and a new pyrrolopyrimidine scaffold, additional compounds have been identified that are extremely effective against acute experimental toxoplasmosis. The in vivo efficacy of these BKIs demonstrates that the cyclopropyloxynaphthyl, cyclopropyloxyquinoline, and 2-ethoxyquinolin-6-yl substituents are associated with efficacy across scaffolds. In addition, a broad range of plasma concentrations after oral dosing resulted from small structural changes to the BKIs. These select BKIs include anti-Toxoplasma compounds that are effective against acute experimental toxoplasmosis and are not toxic in human cell assays, nor to mice when administered for therapy. The BKIs described here are promising late leads for improving anti-Toxoplasma therapy.


Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Proteínas de Protozoários/antagonistas & inibidores , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Cerebral/tratamento farmacológico , Administração Oral , Animais , Área Sob a Curva , Feminino , Técnicas In Vitro , Camundongos , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/sangue , Pirazóis/farmacologia , Pirimidinas/sangue , Pirimidinas/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-29661877

RESUMO

Recent reports highlighting the global significance of cryptosporidiosis among children have renewed efforts to develop control measures. We evaluated the efficacy of bumped kinase inhibitor (BKI) 1369 in the gnotobiotic piglet model of acute diarrhea caused by Cryptosporidium hominis, the species responsible for most human cases. Five-day treatment with BKI 1369 reduced signs of disease early during treatment compared to those of untreated animals. Piglets treated with BKI 1369 exhibited significant reductions of oocyst excretion, mucosal colonization by C. hominis, and mucosal lesions, which resulted in considerable symptomatic improvement. BKI 1369 reduced the parasite burden and disease severity in the gnotobiotic pig model. Together these data suggest that a BKI-mediated therapeutic may be an effective treatment against cryptosporidiosis.


Assuntos
Antiprotozoários/uso terapêutico , Criptosporidiose/tratamento farmacológico , Cryptosporidium/efeitos dos fármacos , Diarreia/tratamento farmacológico , Piperidinas/uso terapêutico , Pirimidinas/uso terapêutico , Quinolinas/uso terapêutico , Doença Aguda , Animais , Animais Recém-Nascidos , Criptosporidiose/parasitologia , Diarreia/parasitologia , Modelos Animais de Doenças , Vida Livre de Germes , Oocistos/metabolismo , Carga Parasitária , Suínos
8.
J Infect Dis ; 216(1): 55-63, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541457

RESUMO

There is a substantial need for novel therapeutics to combat the widespread impact caused by Crytosporidium infection. However, there is a lack of knowledge as to which drug pharmacokinetic (PK) characteristics are key to generate an in vivo response, specifically whether systemic drug exposure is crucial for in vivo efficacy. To identify which PK properties are correlated with in vivo efficacy, we generated physiologically based PK models to simulate systemic and gastrointestinal drug concentrations for a series of bumped kinase inhibitors (BKIs) that have nearly identical in vitro potency against Cryptosporidium but display divergent PK properties. When BKI concentrations were used to predict in vivo efficacy with a neonatal model of Cryptosporidium infection, these concentrations in the large intestine were the sole predictors of the observed in vivo efficacy. The significance of large intestinal BKI exposure for predicting in vivo efficacy was further supported with an adult mouse model of Cryptosporidium infection. This study suggests that drug exposure in the large intestine is essential for generating a superior in vivo response, and that physiologically based PK models can assist in the prioritization of leading preclinical drug candidates for in vivo testing.


Assuntos
Criptosporidiose/tratamento farmacológico , Trato Gastrointestinal/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacocinética , Animais , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/isolamento & purificação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Trato Gastrointestinal/metabolismo , Concentração Inibidora 50 , Camundongos , Camundongos Knockout , Modelos Teóricos , Naftalenos/farmacocinética , Piperidinas/farmacocinética , Inibidores de Proteínas Quinases/sangue , Pirazóis/farmacocinética
9.
J Infect Dis ; 215(8): 1275-1284, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28329187

RESUMO

Bumped kinase inhibitors (BKIs) of Cryptosporidium parvum calcium-dependent protein kinase 1 (CpCDPK1) are leading candidates for treatment of cryptosporidiosis-associated diarrhea. Potential cardiotoxicity related to anti-human ether-à-go-go potassium channel (hERG) activity of the first-generation anti-Cryptosporidium BKIs triggered further testing for efficacy. A luminescence assay adapted for high-throughput screening was used to measure inhibitory activities of BKIs against C. parvum in vitro. Furthermore, neonatal and interferon γ knockout mouse models of C. parvum infection identified BKIs with in vivo activity. Additional iterative experiments for optimum dosing and selecting BKIs with minimum levels of hERG activity and frequencies of other safety liabilities included those that investigated mammalian cell cytotoxicity, C. parvum proliferation inhibition in vitro, anti-human Src inhibition, hERG activity, in vivo pharmacokinetic data, and efficacy in other mouse models. Findings of this study suggest that fecal concentrations greater than parasite inhibitory concentrations correlate best with effective therapy in the mouse model of cryptosporidiosis, but a more refined model for efficacy is needed.


Assuntos
Antiprotozoários/administração & dosagem , Criptosporidiose/tratamento farmacológico , Cryptosporidium parvum/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Administração Oral , Animais , Diarreia/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Knockout , Camundongos SCID
10.
Exp Parasitol ; 180: 71-83, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28065755

RESUMO

Many life-cycle processes in parasites are regulated by protein phosphorylation. Hence, disruption of essential protein kinase function has been explored for therapy of parasitic diseases. However, the difficulty of inhibiting parasite protein kinases to the exclusion of host orthologues poses a practical challenge. A possible path around this difficulty is the use of bumped kinase inhibitors for targeting calcium-dependent protein kinases that contain atypically small gatekeeper residues and are crucial for pathogenic apicomplexan parasites' survival and proliferation. In this article, we review efficacy against the kinase target, parasite growth in vitro, and in animal infection models, as well as the relevant pharmacokinetic and safety parameters of bumped kinase inhibitors.


Assuntos
Antiprotozoários/farmacologia , Apicomplexa/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Infecções por Protozoários/tratamento farmacológico , Animais , Antiprotozoários/uso terapêutico , Apicomplexa/enzimologia , Benzimidazóis/química , Humanos , Imidazóis/química , Inibidores de Proteínas Quinases/uso terapêutico , Infecções por Protozoários/prevenção & controle , Piridinas/química
11.
J Infect Dis ; 214(12): 1856-1864, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27923949

RESUMO

Cryptosporidiosis, caused by the apicomplexan parasite Cryptosporidium parvum, is a diarrheal disease that has produced a large global burden in mortality and morbidity in humans and livestock. There are currently no consistently effective parasite-specific pharmaceuticals available for this disease. Bumped kinase inhibitors (BKIs) specific for parasite calcium-dependent protein kinases (CDPKs) have been shown to reduce infection in several parasites having medical and veterinary importance, including Toxoplasma gondii, Plasmodium falciparum, and C. parvum In the present study, BKIs were screened for efficacy against C. parvum infection in the neonatal mouse model. Three BKIs were then selected for safety and clinical efficacy evaluation in the calf model for cryptosporidiosis. Significant BKI treatment effects were observed for virtually all clinical and parasitological scoring parameters, including diarrhea severity, oocyst shedding, and overall health. These results provide proof of concept for BKIs as therapeutic drug leads in an animal model for human cryptosporidiosis.


Assuntos
Antiprotozoários/administração & dosagem , Doenças dos Bovinos/tratamento farmacológico , Criptosporidiose/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Animais Recém-Nascidos , Antiprotozoários/efeitos adversos , Bovinos , Cryptosporidium parvum/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/efeitos adversos , Resultado do Tratamento
12.
Mol Pharmacol ; 89(5): 560-74, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26921399

RESUMO

All-trans-retinoic acid (atRA) is the active metabolite of vitamin A. The liver is the main storage organ of vitamin A, but activation of the retinoic acid receptors (RARs) in mouse liver and in human liver cell lines has also been shown. AlthoughatRA treatment improves mitochondrial function in skeletal muscle in rodents, its role in modulating mitochondrial function in the liver is controversial, and little data are available regarding the human liver. The aim of this study was to determine whetheratRA regulates hepatic mitochondrial activity.atRA treatment increased the mRNA and protein expression of multiple components of mitochondrialß-oxidation, tricarboxylic acid (TCA) cycle, and respiratory chain. Additionally,atRA increased mitochondrial biogenesis in human hepatocytes and in HepG2 cells with and without lipid loading based on peroxisome proliferator activated receptor gamma coactivator 1αand 1ßand nuclear respiratory factor 1 mRNA and mitochondrial DNA quantification.atRA also increasedß-oxidation and ATP production in HepG2 cells and in human hepatocytes. Knockdown studies of RARα, RARß, and PPARδrevealed that the enhancement of mitochondrial biogenesis andß-oxidation byatRA requires peroxisome proliferator activated receptor delta. In vivo in mice,atRA treatment increased mitochondrial biogenesis markers after an overnight fast. Inhibition ofatRA metabolism by talarozole, a cytochrome P450 (CYP) 26 specific inhibitor, increased the effects ofatRA on mitochondrial biogenesis markers in HepG2 cells and in vivo in mice. These studies show thatatRA regulates mitochondrial function and lipid metabolism and that increasingatRA concentrations in human liver via CYP26 inhibition may increase mitochondrial biogenesis and fatty acidß-oxidation and provide therapeutic benefit in diseases associated with mitochondrial dysfunction.


Assuntos
Mitocôndrias Hepáticas/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , PPAR delta/agonistas , Transdução de Sinais , Tretinoína/metabolismo , Regulação para Cima , Animais , Benzotiazóis/farmacologia , Células Cultivadas , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Biogênese de Organelas , PPAR delta/antagonistas & inibidores , PPAR delta/genética , PPAR delta/metabolismo , Interferência de RNA , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ácido Retinoico 4 Hidroxilase , Receptor alfa de Ácido Retinoico , Triazóis/farmacologia , Regulação para Cima/efeitos dos fármacos
13.
J Biol Chem ; 289(6): 3105-13, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24318876

RESUMO

Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women.


Assuntos
Citocromo P-450 CYP2D6/biossíntese , Fígado/enzimologia , Gravidez/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ativação Transcricional/fisiologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Citocromo P-450 CYP2D6/genética , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Feminino , Células Hep G2 , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Gravidez/genética , Regiões Promotoras Genéticas/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Ativação Transcricional/efeitos dos fármacos , Tretinoína/farmacocinética , Tretinoína/farmacologia
14.
Int J Parasitol Drugs Drug Resist ; 25: 100553, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38917582

RESUMO

Toxoplasma gondii and Neospora caninum are major worldwide morbidity-causing pathogens. Bumped kinase inhibitors (BKIs) are a compound class that has been optimized to target the apicomplexan calcium-dependent protein kinase 1 (CDPK1) - and several members of this class have proven to be safe and highly active in vitro and in vivo. BKI-1708 is based on a 5-aminopyrazole-4-carboxamide scaffold, and exhibited in vitro IC50 values of 120 nM for T. gondii and 480 nM for N. caninum ß-galactosidase expressing strains, and did not affect human foreskin fibroblast (HFF) viability at concentrations up to 25 µM. Electron microscopy established that exposure of tachyzoite-infected fibroblasts to 2.5 µM BKI-1708 in vitro induced the formation of multinucleated schizont-like complexes (MNCs), characterized by continued nuclear division and harboring newly formed intracellular zoites that lack the outer plasma membrane. These zoites were unable to finalize cytokinesis to form infective tachyzoites. BKI-1708 did not affect zebrafish (Danio rerio) embryo development during the first 96 h following egg hatching at concentrations up to 2 µM. Treatments of mice with BKI-1708 at 20 mg/kg/day during five consecutive days resulted in drug plasma levels ranging from 0.14 to 4.95 µM. In vivo efficacy of BKI-1708 was evaluated by oral application of 20 mg/kg/day from day 9-13 of pregnancy in mice experimentally infected with N. caninum (NcSpain-7) tachyzoites or T. gondii (TgShSp1) oocysts. This resulted in significantly decreased cerebral parasite loads and reduced vertical transmission in both models without drug-induced pregnancy interference.

15.
CPT Pharmacometrics Syst Pharmacol ; 13(3): 410-423, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38164114

RESUMO

Oral drug absorption kinetics are usually established in populations with a properly functioning gastrointestinal tract. However, many diseases and therapeutics can alter gastrointestinal physiology and cause diarrhea. The extent of diarrhea-associated impact on drug pharmacokinetics has not been quantitatively described. To address this knowledge gap, we used a population pharmacokinetic modeling approach with data collected in a phase IIa study of matched human immunodeficiency virus (HIV)-infected adults with/without cryptosporidiosis and diarrhea to examine diarrhea-associated impact on oral clofazimine pharmacokinetics. A population pharmacokinetic model was developed with 428 plasma samples from 23 HIV-infected adults with/without Cryptosporidium infection using nonlinear mixed-effects modeling. Covariates describing cryptosporidiosis-associated diarrhea severity (e.g., number of diarrhea episodes, diarrhea grade) or HIV infection (e.g., viral load, CD4+ T cell count) were evaluated. A two-compartment model with lag time and first-order absorption and elimination best fit the data. Maximum diarrhea grade over the study duration was found to be associated with a more than sixfold reduction in clofazimine bioavailability. Apparent clofazimine clearance, intercompartmental clearance, central volume of distribution, and peripheral volume of distribution were 3.71 L/h, 18.2 L/h (interindividual variability [IIV] 45.0%), 473 L (IIV 3.46%), and 3434 L, respectively. The absorption rate constant was 0.625 h-1 (IIV 149%) and absorption lag time was 1.83 h. In conclusion, the maximum diarrhea grade observed for the duration of oral clofazimine administration was associated with a significant reduction in clofazimine bioavailability. Our results highlight the importance of studying disease impacts on oral therapeutic pharmacokinetics to inform dose optimization and maximize the chance of treatment success.


Assuntos
Criptosporidiose , Cryptosporidium , Infecções por HIV , Adulto , Humanos , Clofazimina/farmacocinética , Clofazimina/uso terapêutico , Diarreia/tratamento farmacológico , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Ensaios Clínicos Fase II como Assunto
16.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37461469

RESUMO

Purpose: Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. Experimental design: We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. Results: We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. Conclusion: This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.

17.
Mol Cancer Ther ; 23(7): 973-994, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507737

RESUMO

Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Nonspecific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small-molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell-cycle, metabolic, and enzymatic assays were used to demonstrate their mechanism of action. A human patient-derived xenograft model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. We demonstrate a new class of small-molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.


Assuntos
Proliferação de Células , Glicólise , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Humanos , Animais , Camundongos , Glicólise/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
18.
Clin Transl Sci ; 16(7): 1243-1257, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37118968

RESUMO

Hydroxychloroquine (HCQ) is Food and Drug Administration (FDA)-approved for malaria, systemic and chronic discoid lupus erythematosus, and rheumatoid arthritis. Because HCQ has a proposed multimodal mechanism of action and a well-established safety profile, it is often investigated as a repurposed therapeutic for a range of indications. There is a large degree of uncertainty in HCQ pharmacokinetic (PK) parameters which complicates dose selection when investigating its use in new disease states. Complications with HCQ dose selection emerged as multiple clinical trials investigated HCQ as a potential therapeutic in the early stages of the COVID-19 pandemic. In addition to uncertainty in baseline HCQ PK parameters, it was not clear if disease-related consequences of SARS-CoV-2 infection/COVID-19 would be expected to impact the PK of HCQ and its primary metabolite desethylhydroxychloroquine (DHCQ). To address the question whether SARS-CoV-2 infection/COVID-19 impacted HCQ and DHCQ PK, dried blood spot samples were collected from SARS-CoV-2(-)/(+) participants administered HCQ. When a previously published physiologically based pharmacokinetic (PBPK) model was used to fit the data, the variability in exposure of HCQ and DHCQ was not adequately captured and DHCQ concentrations were overestimated. Improvements to the previous PBPK model were made by incorporating the known range of blood to plasma concentration ratios (B/P) for each compound, adjusting HCQ and DHCQ distribution settings, and optimizing DHCQ clearance. The final PBPK model adequately captured the HCQ and DHCQ concentrations observed in SARS-CoV-2(-)/(+)participants, and incorporating COVID-19-associated changes in cytochrome P450 activity did not further improve model performance for the SARS-CoV-2(+) population.


Assuntos
COVID-19 , Hidroxicloroquina , Humanos , Hidroxicloroquina/efeitos adversos , Hidroxicloroquina/farmacocinética , SARS-CoV-2 , Pandemias , Tratamento Farmacológico da COVID-19
19.
J Lipid Res ; 53(3): 587-598, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22192917

RESUMO

Retinol (vitamin A) circulates at 1-4 µM concentration and is easily measured in serum. However, retinol is biologically inactive. Its metabolite, retinoic acid (RA), is believed to be responsible for biological effects of vitamin A, and hence the measurement of retinol concentrations is of limited value. A UHPLC-MS/MS method using isotope-labeled internal standards was developed and validated for quantitative analysis of endogenous RA isomers and metabolites. The method was used to measure retinoids in serum samples from 20 healthy men. In the fed state, the measured concentrations were 3.1 ± 0.2 nM for atRA, 0.1 ± 0.02 nM for 9-cisRA, 5.3 ± 1.3 nM for 13-cisRA, 0.4 ± 0.4 nM for 9,13-dicisRA, and 17.2 ± 6.8 nM for 4oxo-13-cisRA. The concentrations of the retinoids were not significantly different when measured after an overnight fast (3.0 ± 0.1 nM for atRA, 0.09 ± 0.01 nM for 9-cisRA, 3.9 ± 0.2 nM for 13-cisRA, 0.3 ± 0.1 nM for 9,13-dicisRA, and 11.9 ± 1.6 nM for 4oxo-13-cisRA). 11-cisRA and 4OH-RA were not detected in human serum. The high sensitivity of the MS/MS method combined with the UHPLC separation power allowed detection of endogenous 9-cisRA and 4oxo-atRA for the first time in human serum.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Retinoides/sangue , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Tretinoína/sangue , Adulto Jovem
20.
Elife ; 112022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289746

RESUMO

Background: Diarrhoea remains one of the leading causes of childhood mortality globally. Recent epidemiological studies conducted in low-middle income countries (LMICs) identified Shigella spp. as the first and second most predominant agent of dysentery and moderate diarrhoea, respectively. Antimicrobial therapy is often necessary for Shigella infections; however, we are reaching a crisis point with efficacious antimicrobials. The rapid emergence of resistance against existing antimicrobials in Shigella spp. poses a serious global health problem. Methods: Aiming to identify alternative antimicrobial chemicals with activity against antimicrobial resistant Shigella, we initiated a collaborative academia-industry drug discovery project, applying high-throughput phenotypic screening across broad chemical diversity and followed a lead compound through in vitro and in vivo characterisation. Results: We identified several known antimicrobial compound classes with antibacterial activity against Shigella. These compounds included the oral carbapenem Tebipenem, which was found to be highly potent against broadly susceptible Shigella and contemporary MDR variants for which we perform detailed pre-clinical testing. Additional in vitro screening demonstrated that Tebipenem had activity against a wide range of other non-Shigella enteric bacteria. Cognisant of the risk for the development of resistance against monotherapy, we identified synergistic behaviour of two different drug combinations incorporating Tebipenem. We found the orally bioavailable prodrug (Tebipenem pivoxil) had ideal pharmacokinetic properties for treating enteric pathogens and was effective in clearing the gut of infecting organisms when administered to Shigella-infected mice and gnotobiotic piglets. Conclusions: Our data highlight the emerging antimicrobial resistance crisis and shows that Tebipenem pivoxil (licenced for paediatric respiratory tract infections in Japan) should be accelerated into human trials and could be repurposed as an effective treatment for severe diarrhoea caused by MDR Shigella and other enteric pathogens in LMICs. Funding: Tres Cantos Open Lab Foundation (projects TC239 and TC246), the Bill and Melinda Gates Foundation (grant OPP1172483) and Wellcome (215515/Z/19/Z).


Assuntos
Anti-Infecciosos , Doenças Transmissíveis , Shigella , Animais , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Criança , Diarreia , Reposicionamento de Medicamentos , Humanos , Camundongos , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa