Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 132(11): 3879-92, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20192214

RESUMO

Five-coordinate oxorhenium(V) anions with redox-active catecholate and amidophenolate ligands are shown to effect clean bimetallic cleavage of O(2) to give dioxorhenium(VII) products. A structural homologue with redox-inert oxalate ligands does not react with O(2). Redox-active ligands lower the kinetic barrier to bimetallic O(2) homolysis at five-coordinate oxorhenium(V) by facilitating formation and stabilization of intermediate O(2) adducts. O(2) activation occurs by two sequential Re-O bond forming reactions, which generate mononuclear eta(1)-superoxo species, and then binuclear trans-mu-1,2-peroxo-bridged complexes. Formation of both Re-O bonds requires trapping of a triplet radical dioxygen species by a cis-[Re(V)(O)(cat)(2)](-) anion. In each reaction the dioxygen fragment is reduced by 1e(-), so generation of each new Re-O bond requires that an oxometal fragment is oxidized by 1e(-). Complexes containing a redox-active ligand access a lower energy reaction pathway for the 1e(-) Re-O bond forming reaction because the metal fragment can be oxidized without a change in formal rhenium oxidation state. It is also likely that redox-active ligands facilitate O(2) homolysis by lowering the barrier to the formally spin-forbidden reactions of triplet dioxygen with the closed shell oxorhenium(V) anions. By orthogonalizing 1e(-) and 2e(-) redox at oxorhenium(V), the redox-active ligand allows high-valent rhenium to utilize a mechanism for O(2) activation that is atypical of oxorhenium(V) but more typical for oxygenase enzymes and models based on 3d transition metal ions: O(2) cleavage occurs by a net 2e(-) process through a series of 1e(-) steps. The implications for design of new multielectron catalysts for oxygenase-type O(2) activation, as well as the microscopic reverse reaction, O-O bond formation from coupling of two M=O fragments for catalytic water oxidation, are discussed.


Assuntos
Oxigênio/química , Rênio/química , Ligantes , Modelos Moleculares , Conformação Molecular , Oxirredução , Teoria Quântica
2.
Phys Chem Chem Phys ; 10(19): 2646-55, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18464979

RESUMO

High-quality quantum-mechanical methods are used to examine how substituents tune pi-pi interactions between monosubstituted benzene dimers in parallel-displaced geometries. The present study focuses on the effect of the substituent across entire potential energy curves. Substituent effects are examined in terms of the fundamental components of the interaction (electrostatics, exchange-repulsion, dispersion and induction) through the use of symmetry-adapted perturbation theory. Both second-order Møller-Plesset perturbation theory (MP2) with a truncated aug-cc-pVDZ' basis and spin-component-scaled MP2 (SCS-MP2) with the aug-cc-pVTZ basis are found to mimic closely estimates of coupled-cluster with perturbative triples [CCSD(T)] in an aug-cc-pVTZ basis. Substituents can have a significant effect on the electronic structure of the pi cloud of an aromatic ring, leading to marked changes in the pi-pi interaction. Moreover, there can also be significant direct interactions between a substituent on one ring and the pi-cloud of the other ring.

3.
J Chem Phys ; 127(16): 164110, 2007 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-17979322

RESUMO

Benchmark full configuration interaction and equation-of-motion coupled-cluster model with single and double substitutions for ionized systems (EOM-IP-CCSD) results are presented for prototypical charge transfer species. EOM-IP-CCSD describes these doublet systems based on the closed-shell reference and thus avoids the doublet instability problem. The studied quantities are associated with the quality of the potential energy surface (PES) along the charge transfer coordinate and distribution of the charge between fragments. It is found that EOM-IP-CCSD is capable of describing accurately both the charge-localized and charge-delocalized systems, yielding accurate charge distributions and energies. This is in stark contrast with the methods based on the open-shell reference, which overlocalize the charge and produce a PES cusp when the fragments are indistinguishable.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa