Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 158A(3): 622-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22308068

RESUMO

We report on a consanguineous couple with two affected sons who presented with primary microcephaly and moderate to severe intellectual disabilities. A SNP array uncovered two overlapping regions of copy-neutral absence of heterozygosity (AOH) in both sibs. This led to sequencing of WDR62, a gene that codes for a spindle pole protein recently identified as a cause of primary microcephaly. A homozygous missense mutation in WDR62, p.E400K, was found in both boys and segregated with the condition in this family. WDR62 is one of seven genes responsible for autosomal recessive primary microcephaly (MCPH), and appears to be one of the most frequently involved in MCPH following ASPM. Studies of ASPM and WDR62 should perhaps be pursued in all cases of primary microcephaly with or without gross brain malformations.


Assuntos
Consanguinidade , Microcefalia/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas de Ciclo Celular , Feminino , Homozigoto , Humanos , Lactente , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único
2.
Hum Biol ; 82(4): 409-32, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21082910

RESUMO

We used 15 short tandem repeat (STR) loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D18S51, D5S818, and FGA) to genetically characterize 361 individuals from 11 indigenous populations (Amuzgo, Chinanteco, Chontal, Huave, Mazateco, Mixe, Mixteco, Triqui, Zapoteco del Istmo, Zapoteco del Valle, and Zoque) from Oaxaca, Mexico. We also used previously published data from other Mexican peoples (Maya, Chol, Tepehua, Otomí, and Mestizos from northern and central Mexico) to delineate genetic relations, for a total of 541 individuals. Average heterozygosity (H) was lower in most populations from Oaxaca (range 0.687 in Zoque to 0.756 in Chontal) than values observed in Mestizo populations from Mexico (0.758 and 0.793 in central and northern Mestizo, respectively) but higher than values observed in other Amerindian populations from South America; the same relation was true for the number of alleles (n(a) ). We tested (using the software Structure) whether major geographic or linguistic barriers to gene flow existed among the populations of Oaxaca and found that the populations appeared to constitute one or two genetic groups, suggesting that neither geographic location nor linguistics had an effect on the genetic structure of these culturally and linguistically highly diverse indigenous peoples. Moreover, we found a low but statistically significant between-population differentiation. In addition, the genetic structure of Oaxacan populations did not fit an isolation-by-distance model. Finally, using AMOVA and a Bayesian clustering approach, we did not detect significant geographic or linguistic barriers to gene flow within Oaxaca. These results suggest that the indigenous communities of Oaxaca, although culturally isolated, can be genetically defined as a large, nearly panmictic population in which migration could be a more important population mechanism than genetic drift. Finally, compared with outgroups in Mexico (both indigenous peoples and Mestizos), three groups were apparent. Among them, only the Otomí population from Hidalgo has a different culture and language.


Assuntos
Genética Populacional , Cultura , Emigração e Imigração , Feminino , Variação Genética , Humanos , Idioma , Masculino , México
3.
Mol Ecol Resour ; 19(4): 982-996, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30887686

RESUMO

Bacteria are not only ubiquitous on earth but can also be incredibly diverse within clean laboratories and reagents. The presence of both living and dead bacteria in laboratory environments and reagents is especially problematic when examining samples with low endogenous content (e.g., skin swabs, tissue biopsies, ice, water, degraded forensic samples or ancient material), where contaminants can outnumber endogenous microorganisms within samples. The contribution of contaminants within high-throughput studies remains poorly understood because of the relatively low number of contaminant surveys. Here, we examined 144 negative control samples (extraction blank and no-template amplification controls) collected in both typical molecular laboratories and an ultraclean ancient DNA laboratory over 5 years to characterize long-term contaminant diversity. We additionally compared the contaminant content within a home-made silica-based extraction method, commonly used to analyse low endogenous content samples, with a widely used commercial DNA extraction kit. The contaminant taxonomic profile of the ultraclean ancient DNA laboratory was unique compared to modern molecular biology laboratories, and changed over time according to researcher, month and season. The commercial kit also contained higher microbial diversity and several human-associated taxa in comparison to the home-made silica extraction protocol. We recommend a minimum of two strategies to reduce the impacts of laboratory contaminants within low-biomass metagenomic studies: (a) extraction blank controls should be included and sequenced with every batch of extractions and (b) the contributions of laboratory contamination should be assessed and reported in each high-throughput metagenomic study.


Assuntos
Contaminação por DNA , Erros de Diagnóstico , Metagenômica/métodos , Biologia Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa