Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Nature ; 583(7814): 48-54, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572207

RESUMO

Observation of the neutrinoless double ß decay is the only practical way to establish that neutrinos are their own antiparticles1. Because of the small masses of neutrinos, the lifetime of neutrinoless double ß decay is expected to be at least ten orders of magnitude greater than the typical lifetimes of natural radioactive chains, which can mimic the experimental signature of neutrinoless double ß decay2. The most robust identification of neutrinoless double ß decay requires the definition of a signature signal-such as the observation of the daughter atom in the decay-that cannot be generated by radioactive backgrounds, as well as excellent energy resolution. In particular, the neutrinoless double ß decay of 136Xe could be established by detecting the daughter atom, 136Ba2+, in its doubly ionized state3-8. Here we demonstrate an important step towards a 'barium-tagging' experiment, which identifies double ß decay through the detection of a single Ba2+ ion. We propose a fluorescent bicolour indicator as the core of a sensor that can detect single Ba2+ ions in a high-pressure xenon gas detector. In a sensor made of a monolayer of such indicators, the Ba2+ dication would be captured by one of the molecules and generate a Ba2+-coordinated species with distinct photophysical properties. The presence of such a single Ba2+-coordinated indicator would be revealed by its response to repeated interrogation with a laser system, enabling the development of a sensor able to detect single Ba2+ ions in high-pressure xenon gas detectors for barium-tagging experiments.

2.
Opt Express ; 32(8): 13797-13808, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859340

RESUMO

The presence of scattering media limits the quality of images obtained by optical systems. Single-pixel imaging techniques based on structured illumination are highly tolerant to the presence of scattering between the object and the sensor, but very sensitive when the scattering medium is between the light source and the object. This makes it difficult to develop single-pixel imaging techniques for the case of objects immersed in scattering media. We present what we believe to be a new system for imaging objects through inhomogeneous scattering media in an epi-illumination configuration. It works in an adaptive way by combining diffuse optical imaging (DOI) and single pixel imaging (SPI) techniques in two stages. First, the turbid media is characterized by projecting light patterns with an LED array and applying DOI techniques. Second, the LED array is programmed to project light only through the less scattering areas of the media, while simultaneously using a digital micromirror device (DMD) to project light patterns onto the target using Hadamard basis coding functions. With this adaptive technique, we are able to obtain images of targets through two different scattering media with better quality than using conventional illumination. We also show that the system works with fluorescent targets.

3.
Ophthalmic Physiol Opt ; 44(4): 718-726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551074

RESUMO

PURPOSE: To compare the ocular effects of exposure to a low-humidity environment with and without contact lens (CL) wear using various non-invasive tests. METHODS: Fourteen habitual soft CL wearers were exposed to controlled low humidity (5% relative humidity [RH]) in an environmental chamber for 90 min on two separate occasions. First, when wearing their habitual spectacles and then, on a separate visit, when wearing silicone hydrogel CLs that were fitted specifically for this purpose. All participants had adapted to the new CL prior to data collection. Three non-invasive objective measurements were taken at each visit: blinking rate, objective ocular scatter (measured using the objective scatter index) and ocular surface cooling rate (measured using a long-wave infrared thermal camera). At each visit, measurements were taken before the exposure in comfortable environmental conditions (RH: 45%), and after exposure to environmental stress (low humidity, RH: 5%). RESULTS: CL wearers showed increased blinking rate (p < 0.005) and ocular scatter (p = 0.03) but similar cooling rate of the ocular surface (p = 0.08) when compared with spectacle wear in comfortable environmental conditions. The exposure to low humidity increased the blinking rate significantly with both types of corrections (p = 0.01). Interestingly, ocular scatter (p = 0.96) and cooling rate (p = 0.73) were not significantly different before and after exposure to low humidity. There were no significant two-way interactions between correction and exposure in any of the measurements. CONCLUSIONS: CLs significantly increased the blinking rate, which prevented a quick degradation of the tear film integrity as it was refreshed more regularly. It is hypothesised that the increased blinking rate in CL wearers aids in maintaining ocular scatter quality and cooling rate when exposed to a low-humidity environment. These results highlight the importance of blinking in maintaining tear film stability.


Assuntos
Piscadela , Umidade , Humanos , Projetos Piloto , Piscadela/fisiologia , Adulto , Masculino , Feminino , Adulto Jovem , Lentes de Contato Hidrofílicas , Lágrimas/fisiologia , Lentes de Contato
4.
Artigo em Inglês | MEDLINE | ID: mdl-38980146

RESUMO

PURPOSE: Defocus Incorporated Soft Contact (DISC) lenses, a commonly used type of multifocal lens in clinical practice, may slow down myopia progression by inducing myopic retinal defocus. The purpose of this study was to explore whether the induced defocus across the retina could be affected by visual environments encountered in the real world, such as differences in viewing distance and ambient illuminance. METHODS: In this cross-over trial, 30 myopic adults wore both DISC lenses and single vision contact (SVC) lenses in random order. An open-view Hartmann-Shack scanning wavefront sensor was used to measure defocus at different retinal locations along the horizontal meridian under four experimental conditions: far target (3 m) and near targets (0.33 m) under scotopic (<1 lux) or photopic (~300 lux) conditions. RESULTS: The results showed that DISC lenses induced more myopic retinal defocus than SVC lenses in all conditions (all p < 0.05), except for the scotopic near target. In addition, for DISC lenses, the defocus was greater in the photopic than the scotopic conditions for both the far and near targets (both p < 0.05). CONCLUSION: In conclusion, the retinal defocus induced by these multifocal lenses was dependent on both visual distance and ambient illuminance, indicating that the visual conditions might affect the anti-myopia efficacy of these devices.

5.
Annu Rev Biomed Eng ; 23: 277-306, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33848431

RESUMO

As the human eye ages, the crystalline lens stiffens (presbyopia) and opacifies (cataract), requiring its replacement with an artificial lens [intraocular lens (IOL)]. Cataract surgery is the most frequently performed surgical procedure in the world. The increase in IOL designs has not been paralleled in practice by a sophistication in IOL selection methods, which rely on limited anatomical measurements of the eye and the surgeon's interpretation of the patient's needs and expectations. We propose that the future of IOL selection will be guided by 3D quantitative imaging of the crystalline lens to map lens opacities, anticipate IOL position, and develop fully customized eye models for ray-tracing-based IOL selection. Conversely, visual simulators (in which IOL designs are programmed in active elements) allow patients to experience prospective vision before surgery and to make more informed decisions about which IOL to choose. Quantitative imaging and optical and visual simulations of postsurgery outcomes will allow optimal treatments to be selected for a patient undergoing modern cataract surgery.


Assuntos
Catarata , Cristalino , Oftalmologia , Humanos , Implante de Lente Intraocular , Estudos Prospectivos
6.
Opt Express ; 28(25): 37450-37458, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379579

RESUMO

Some aspects of vision after correcting the longitudinal chromatic aberration (LCA) of the eye are not yet completely understood. For instance, correcting the LCA notably alters the through focus visual acuity (VA) curve, but it does not improve the best VA obtained for the natural case. In this work, vision with corrected LCA is further investigated by using an adaptive optics visual simulator (AOVS). VA was measured continuously during 20 minutes in 5 subjects under both natural and corrected LCA conditions to explore possible adaptation effects. Low contrast VA as a function of time exhibited a consistent and significant boost of 0.19 in decimal scale after an average time of 10.9 minutes of continuous testing. For high contrast, only one subject showed a similar increase in VA. These results suggest that some LCA neural adaptation may exist, particularly for low contrast. This adaptation impacts the performance of vision under corrected LCA, and possibly prevents measurement for immediate visual benefit. The results have practical implications for the design and visual testing of optical aids, especially those correcting, or altering, the LCA.


Assuntos
Adaptação Ocular/fisiologia , Defeitos da Visão Cromática/fisiopatologia , Imagem Óptica/métodos , Acuidade Visual/fisiologia , Sensibilidades de Contraste/fisiologia , Humanos , Fenômenos Fisiológicos Oculares , Óptica e Fotônica , Neurônios Retinianos
7.
Opt Express ; 28(23): 34180-34189, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182893

RESUMO

Spatial Light Modulators (SLMs) are widely used in several fields of optics such as adaptive optics. SLMs based on Liquid Crystal (LC) devices allow a dynamic and easy representation of two-dimensional phase maps. A drawback of these devices is their elevated cost, preventing a massive use of the technology. We present a more affordable approach based on the serial arrangement of vertical aligned LC devices, with characteristics of phase modulation similar to a widely used parallel aligned LC device. We discuss the peculiarities of the approach, the performance and some potential areas of applications.

8.
Opt Express ; 27(24): 35935-35947, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878758

RESUMO

An enhanced adaptive optics visual simulator (AOVS) was used to study the impact of chromatic aberration on vision. In particular, through-focus visual acuity (VA) was measured in four subjects under three longitudinal chromatic aberration (LCA) conditions: natural LCA, compensated LCA and doubled LCA. Ray-tracing simulations using a chromatic eye model were also performed for a better understanding of experimental results. Simulations predicted the optical quality of the retinal images and VA by applying a semi-empirical formula. Experimental and ray tracing results showed a significant agreement in the natural LCA case (R2 = 0.92). Modifying the LCA caused an impairment in the predictability of the results, with decreasing correlations between experiment and simulations (compensated LCA, R2 = 0.84; doubled LCA, R2 = 0.59). VA under modified LCA was systematically overestimated by the model around the best focus position. The results provided useful information on how LCA manipulation affects the depth of focus. Decreased capability of the model to predict VA in modified LCA conditions suggests that neural adaptation may play a role.


Assuntos
Óptica e Fotônica , Acuidade Visual/fisiologia , Adulto , Humanos , Luz , Pessoa de Meia-Idade , Estimulação Luminosa , Retina/fisiologia
9.
Opt Express ; 27(9): 12399-12413, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052780

RESUMO

A method to simultaneously control aberrations and the aperture of an optical system using a single phase-only spatial light modulator was investigated. The experiment was performed using a liquid-crystal-on-silicon spatial light modulator (LCoS-SLM) within an adaptive optics system used for visual testing, although the method has broader applications in adaptive optics field. The performance of the technique was characterized through the estimation of the system's modulation transfer functions (MTFs) by using a random chart method. MTFs obtained from the phase modulation-based approach were compared with those from using a real aperture (diaphragm). The areas under the MTFs for the two conditions were similar up to 98%, confirming that the low-pass filter effect associated to the size of the entrance pupil was similar for the phase-modulated pupil and the physical pupil. As an example of application, both aberrations and pupil were controlled by a single phase-only modulator to study the through-focus visual performance in real subjects. Limitations and possible enhancements of the presented method were also discussed. The presented technique reduces complexity and cost of adaptive optics systems. It opens the door to new experiments by allowing dynamic modulation of aberrations and apertures of any shape.

10.
J Opt Soc Am A Opt Image Sci Vis ; 36(5): 722-730, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31044998

RESUMO

An adaptive optics visual simulator (AOVS) with an extended dioptric range was developed, allowing measuring and correcting aberrations in a majority of highly ametropic eyes. In the instrument, a tunable lens is used for defocus correction, while a liquid-crystal-on-silicon spatial light modulator is used for compensating or inducing any other aberration. The instrument incorporates a digital projector, which uses a micromirror array to display the stimuli. A motorized diaphragm enables operation for any physiological pupil size. A full description of the instrument and its calibration are provided, together with the results obtained in seven highly myopic subjects with refraction of -7.2±1.8 D (mean±SD). Refraction obtained with the instrument was compared to the standard refraction prescribed by trial lenses. When using the refraction obtained by the AOVS, the visual acuity (VA) exhibited an average increase of 0.21 (decimal scale). The visual impact of correcting high-order aberrations is presented in three subjects, whose VAs slightly improved with the correction. High myopes are able to benefit from the improved refraction assessment. The new instrument creates a possibility for a wide number of new experiments, especially for eyes exhibiting large refractive errors, where previous AO instruments failed to operate.


Assuntos
Lentes , Dispositivos Ópticos , Adulto , Desenho de Equipamento , Humanos , Miopia/fisiopatologia , Acuidade Visual , Adulto Jovem
11.
J Opt Soc Am A Opt Image Sci Vis ; 36(4): B138-B142, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31044994

RESUMO

Tear-film dynamics were analyzed by a synchronizing recording of double-pass (DP) and pupil retro-illumination (RI) images with contrast sensitivity (CS) measurements. Simultaneous DP and RI images were acquired in three subjects wearing contact lenses while keeping the eye open. Changes in contrast sensitivity for an 18 c/deg green grating were also estimated. From the DP retinal images, the effect of the tear film is described through the objective scattering index (OSI). This presented a negative correlation with the increase in CS during tear-film deterioration (as observed by RI imaging). These results show a relationship between visual outcome degradation due to tear-film breakup and the increase in intraocular scattering. This work shows a combined methodology for the evaluation of tear-film dynamics.


Assuntos
Sensibilidades de Contraste , Luz , Pupila/efeitos da radiação , Lágrimas/metabolismo , Estudos de Casos e Controles , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/fisiopatologia , Humanos , Espalhamento de Radiação , Lágrimas/efeitos da radiação
12.
Appl Opt ; 58(14): 3830-3835, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31158196

RESUMO

Ti:sapphire laser systems are the more extended excitation sources in multiphoton (MP) microscopy. Although tunable, the cost, size, and lack of portability often limit their use in some research fields. Femtosecond fiber-based lasers represent an attractive alternative since they are portable, compact, and affordable. Most MP applications using these devices employ wavelengths beyond 1000 nm. This work evaluates the performance of a mode-locked fiber-based laser emitting at 780 nm (within the spectral region often used with Ti:sapphire devices) for use in MP imaging microscopy. MP images acquired with this laser system have been compared with those obtained with a "regular" solid-state source. Results herein show that the images recorded with both laser sources were similar, independently of the depth location of the imaged plane. The structural information contained in the images hardly differed. Moreover, the images of deeper layers improved by means of adaptive optics were also similar. These ultrafast laser sources are expected to enhance the impact of MP microscopy in basic research, as well as in biomedical environments.

13.
Opt Express ; 26(11): 14278-14287, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877468

RESUMO

A multi-actuator adaptive lens (AL) was incorporated into a multi-photon (MP) microscope to improve the quality of images of thick samples. Through a hill-climbing procedure the AL corrected for the specimen-induced aberrations enhancing MP images. The final images hardly differed when two different metrics were used, although the sets of Zernike coefficients were not identical. The optimized MP images acquired with the AL were also compared with those obtained with a liquid-crystal-on-silicon spatial light modulator. Results have shown that both devices lead to similar images, which corroborates the usefulness of this AL for MP imaging.

14.
Opt Express ; 25(9): 9793-9801, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468359

RESUMO

The chromatic behavior of diffractive optical elements, exhibiting 2π-wrapped phase profiles, implemented into liquid crystal spatial light modulators (LC-SLM) is described. A wrapped phase map is only equivalent to the original continuous profile for the design wavelength while at other wavelengths there are unwanted phase jumps and the profile does not correspond to a pure defocus. For those conditions the wrapped profile behaves as a multiple order lens (multi-focal lens). The optical power dispersion for each order is linearly proportional to the wavelength, while the energy of each order depends on the design wavelength and the material dispersion. For practical purposes, for most of the visible range only first order (main defocus) is relevant but two other orders may also be considered depending on the actual PSF of the system. As an application, we demonstrate that the longitudinal chromatic aberration of the eye can be compensated by the diffractive lens dispersion when the appropriate defocus is programmed into the SLM.

15.
Ophthalmic Physiol Opt ; 37(3): 342-346, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28439979

RESUMO

PURPOSE: Scattering in the eye occurs mainly at two sites: the eye's optical media and the deeper retinal layers. Although the two phenomena are often treated collectively, their spatial domain of contribution to the double-pass Point Spread Function (PSF) is different: the fundus effect is limited to the narrow and middle part of the PSF whereas scattering in the eye's optics extends also to wide angles. The objective of this work was to determine the domain of contribution at the double-pass PSF of light scattered in the ocular media and the ocular fundus, using simulated and experimental data for two different wavelengths and for two different pigmentations. METHODS: Diffuse reflection was simulated using Monte Carlo simulations for a four-layer retinal fundus model. Four situations were simulated in total for two different choroidal absorptions at two different wavelengths. Light diffusion in the fundus was the only phenomenon considered in the model. The simulations were compared against experimental fundus reflection data obtained in a previous study. RESULTS: The simulations showed that at 560 nm, diffusion in the fundus causes light to extend to a radius of 2°, independently of the choroidal pigmentation, whereas at 650 nm it extends to radii of 4.5° and 4° for low and high choroidal pigmentation respectively. Experimental data showed a similar behaviour at low angles where light diffusion in the fundus is dominant, but different at higher angles due to scattering in the ocular media. CONCLUSION: The spatial contribution of light diffused in the ocular fundus to the PSF was found to be limited to narrower angles compared to that of scattering at the ocular media. The comparison of simulated and optical data showed that beyond 2° at 560 nm and 4-4.5° at 650 nm the only phenomenon contributing to the PSF is scattering in the ocular media, whereas the fundus contribution can be assumed as negligible.


Assuntos
Luz , Modelos Teóricos , Método de Monte Carlo , Óptica e Fotônica/métodos , Retina/fisiologia , Visão Ocular , Humanos , Espalhamento de Radiação
16.
Opt Express ; 24(13): 14159-71, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410574

RESUMO

An auto-referenced interferometric method for calibrating phase modulation of parallel-aligned liquid crystal (PAL) spatial light modulators (SLM) is described. The method is experimentally straightforward, robust, and requires solely of a collimated beam, with no need of additional optics. This method uses the SLM itself to create a tilted plane wave and a reference wave which mutually interfere. These waves are codified by means of a binary diffraction grating and a uniformly distributed gray level area (piston) into the SLM surface. Phase shift for each gray level addressed to the piston section can then be evaluated. Phase modulation on the SLM can also be retrieved with the proposed method over spatially resolved portions of the surface. Phase information obtained with this novel method is compared to other well established calibration procedures, requiring extra elements and more elaborated optical set-ups. The results show a good agreement with previous methods. The advantages of the new method include high mechanical stability, faster performance, and a significantly easier practical implementation.

17.
J Microsc ; 261(3): 249-58, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26469361

RESUMO

A wavefront sensorless adaptive optics technique was combined with a custom-made multiphoton microscope to correct for specimen-induced aberrations. A liquid-crystal-on-silicon (LCoS) modulator was used to systematically generate Zernike modes during image recording. The performance of the instrument was evaluated in samples providing different nonlinear signals and the benefit of correcting higher order aberrations was always noticeable (in both contrast and resolution). The optimum aberration pattern was stable in time for the samples here involved. For a particular depth location within the sample, the wavefront to be precompensated was independent on the size of the imaged area (up to ∼ 360 × 360 µm(2)). The mode combination optimizing the recorded image depended on the Zernike correction control sequence; however, the final images hardly differed. At deeper locations, a noticeable dominance of spherical aberration was found. The influence of other aberration terms was also compared to the effect of the spherical aberration.

18.
Appl Opt ; 55(36): 10198-10203, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28059235

RESUMO

Single pixel imaging can be the preferred method over traditional 2D-array imaging in spectral ranges where conventional cameras are not available. However, when it comes to real-time video imaging, single pixel imaging cannot compete with the framerates of conventional cameras, especially when high-resolution images are desired. Here we evaluate the performance of an imaging approach using two detectors simultaneously. First, we present theoretical results on how low SNR affects final image quality followed by experimentally determined results. Obtained video framerates were doubled compared to state of the art systems, resulting in a framerate from 22 Hz for a 32×32 resolution to 0.75 Hz for a 128×128 resolution image. Additionally, the two detector imaging technique enables the acquisition of images with a resolution of 256×256 in less than 3 s.

19.
J Vis ; 16(8): 16, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27333457

RESUMO

Night myopia, which is a shift in refraction with light level, has been widely studied but still lacks a complete understanding. We used a new infrared open-view binocular Hartmann-Shack wave front sensor to quantify night myopia under monocular and natural binocular viewing conditions. Both eyes' accommodative response, aberrations, pupil diameter, and convergence were simultaneously measured at light levels ranging from photopic to scotopic conditions to total darkness. For monocular vision, reducing the stimulus luminance resulted in a progression of the accommodative state that tends toward the subject's dark focus or tonic accommodation and a change in convergence following the induced accommodative error. Most subjects presented a myopic shift of accommodation that was mitigated in binocular vision. The impact of spherical aberration on the focus shift was relatively small. Our results in monocular conditions support the hypothesis that night myopia has an accommodative origin as the eye progressively changes its accommodation state with decreasing luminance toward its resting state in total darkness. On the other hand, binocularity restrains night myopia, possibly by using fusional convergence as an additional accommodative cue, thus reducing the potential impact of night myopia on vision at low light levels.


Assuntos
Acomodação Ocular/fisiologia , Adaptação à Escuridão/fisiologia , Escuridão , Miopia/fisiopatologia , Visão Noturna/fisiologia , Visão Binocular/fisiologia , Adulto , Feminino , Humanos , Masculino , Testes Visuais
20.
Ophthalmology ; 122(2): 233-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25444348

RESUMO

OBJECTIVE: To evaluate to what extent the modification of corneal asphericity to induce spherical aberration (SA) can improve the depth of focus and to determine whether preoperative adaptive optics assessment (Voptica SL) can predict an optimal SA value for each patient. DESIGN: Comparative, prospective clinical trial with paired eye control. PARTICIPANTS: Patients ≥45 years old who are hyperopic from +1.00 to +2.50 diopters (D), with eyes suitable for LASIK surgery. INTERVENTION: Bilateral hyperopic LASIK surgery using a 200-Hz Allegretto excimer laser. The dominant eye was operated using a conventional profile. The nondominant eye was programmed with an aspheric ablation profile and -0.75 D monovision. MAIN OUTCOME MEASURES: Primary outcome was the correlation between postoperative SA and depth of focus, defined as the pseudo-accommodation value (PAV = [1/reading distance {m}] - minimum addition [D]). Main secondary outcome was the comparison of depth of focus between patients with an induced SA close to the optimal one (group 1), patients with an induced SA far from the optimal one (group 2), and patients for whom SA induction did not increase the depth of focus (control group). RESULTS: We included 76 patients. Between preoperative and postoperative assessment, the mean increase of distance-corrected PAV for near vision was +0.25±0.64 D (P < 0.001) for dominant eyes and +0.63±0.55 D (P < 0.001) for nondominant eyes. As the level of negative or positive postoperative SA increased, PAV for intermediate and near vision increased. Among the 37 eyes that followed the preoperative adaptive optics assessment, the mean PAV increase at near was significantly higher (P < 0.05) in group 1 (0.93±0.50 D) than in group 2 (0.46±0.42 D) and than in the control group (0.35±0.32 D). The mean optimal SA value determined by the dynamic simulation procedure to optimize the depth of focus was -0.18±0.13 µm at 4.5 mm. CONCLUSIONS: Aspheric hyperopic LASIK can increase the depth of focus without impairing far vision, but this benefit would be maximal and reproducible if we could define and achieve an optimal SA value determined by preoperative assessment using an adaptive optics instrument.


Assuntos
Aberrações de Frente de Onda da Córnea/fisiopatologia , Percepção de Profundidade/fisiologia , Hiperopia/cirurgia , Ceratomileuse Assistida por Excimer Laser In Situ/métodos , Lasers de Excimer/uso terapêutico , Presbiopia/fisiopatologia , Idoso , Dominância Ocular/fisiologia , Feminino , Humanos , Hiperopia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Estudos Prospectivos , Acuidade Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa